×

A stable spectral difference approach for computations with triangular and hybrid grids up to the \(6^{th}\) order of accuracy. (English) Zbl 07524772

Summary: In the present paper, a stable Spectral Difference formulation on triangles is defined using a flux polynomial expressed in the Raviart-Thomas basis up to the sixth-order of accuracy. Compared to the literature on the Spectral Difference approach, the present work increases the order of accuracy that the stable formulation can deal with. The proposed scheme is based on a set of flux points defined in the paper. The sets of points leading to a stable formulation are determined using a Fourier stability analysis of the linear advection equation coupled with an optimization process. The proposed Spectral Difference formulation differs from the Flux Reconstruction method on hybrid grids: the distinction between the two approaches is highlighted through the definition of the number of interior flux points. Validation starts from a convergence study using Euler equations and continues with simulations of laminar viscous flows over the NACA0012 airfoil using quadratic triangles and around a cylinder using a hybrid grid.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
65Dxx Numerical approximation and computational geometry (primarily algorithms)

Software:

SciPy; Python; polyquad
Full Text: DOI

References:

[1] Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin Methods (2000), Springer: Springer Berlin, Heidelberg
[2] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods (2008), Springer: Springer New York · Zbl 1134.65068
[3] Di Pietro, D.; Ern, A., Mathematical Aspects of Discontinuous Galerkin Methods (2012), Springer: Springer Berlin, Heidelberg · Zbl 1231.65209
[4] Feng, X.; Karakashian, O.; Xing, Y., Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations (2014), Springer International Publishing · Zbl 1279.65005
[5] Dolejší, V.; Feistauer, M., Discontinuous Galerkin Method (2015), Springer International Publishing · Zbl 1276.76039
[6] Uzunca, M., Adaptive Discontinuous Galerkin Methods for Non-linear Reactive Flows (2016), Springer International Publishing · Zbl 1354.76005
[7] Cangiani, A.; Dong, Z.; Georgoulis, E. H.; Houston, P., hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes (2017), Springer International Publishing · Zbl 1382.65307
[8] Du, S.; Sayas, F.-J., An Invitation to the Theory of the Hybridizable Discontinuous Galerkin Method (2019), Springer International Publishing · Zbl 1536.65001
[9] Kroll, N.; Bieler, H.; Deconinck, H.; Couaillier, V.; Ven, H.; Sørensen, K., ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 13 (2010), Springer: Springer Berlin, Heidelberg
[10] 36th CFD/ADIGMA course on hp-adaptive and hp-multigrid methods (2010), Von Karman Institute, VKI LS 2010-01
[11] Kroll, N.; Hirsch, C.; Bassi, F.; Johnston, C.; Hillewaert, K., IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach, Results of a Collaborative Project Funded by the European Union, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 128 (2015), Springer · Zbl 1330.76006
[12] Brunet, V.; Croner, E.; Minot, A.; de Laborderie, J.; Lippinois, E.; Richard, S.; Boussuge, J.-F.; Dombard, J.; Duchaine, F.; Gicquel, L.; Poinsot, T.; Puigt, G.; Staffelbach, G.; Segui, L.; Vermorel, O.; Villedieu, N.; Cagnone, J.-S.; Hillewaert, K.; Rasquin, M.; Lartigue, G.; Moureau, V.; Roger, T.; Couaillier, V.; Martin, E.; de la Llave Plata, M.; Le Gouez, J.-M.; Renac, F., Comparison of various CFD codes for LES simulations of turbomachinery: from inviscid vortex convection to multi-stage compressor, (ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway (2018))
[13] Yu, M.; Wang, Z. J.; Liu, Y., On the accuracy and efficiency of discontinuous Galerkin, spectral difference and correction procedure via reconstruction methods, J. Comput. Phys., 259, 70-95 (2014) · Zbl 1349.65591
[14] Huynh, H. T., A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, (18th AIAA Computational Fluid Dynamics Conference (2007))
[15] Wang, Z. J.; Gao, H., A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids, J. Comput. Phys., 228, 21, 8161-8186 (2009) · Zbl 1173.65343
[16] Allaneau, Y.; Jameson, A., Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations, Comput. Methods Appl. Mech. Eng., 200, 3626-3636 (2011) · Zbl 1239.65061
[17] Abgrall, R.; Mélédo, E. L.; Öffner, P.; Offner, P., On the connection between residual distribution schemes and flux reconstruction (2018), preprint
[18] Vincent, P. E.; Castonguay, P.; Jameson, A., A new class of high-order energy stable flux reconstruction schemes, J. Sci. Comput., 47, 1, 50-72 (2011) · Zbl 1433.76094
[19] Castonguay, P.; Vincent, P.; Jameson, A., A new class of high-order energy stable flux reconstruction schemes for triangular elements, J. Sci. Comput., 51, 1, 224-256 (2012) · Zbl 1457.65101
[20] Huynh, H.; Wang, Z.; Vincent, P., High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids, Comput. Fluids, 98, 209-220 (2014) · Zbl 1390.65123
[21] Kopriva, D. A.; Kolias, J. H., A conservative and staggered-grid Chebyshev and multidomain method and for compressible and flows, J. Comput. Phys., 125, 244-261 (1996) · Zbl 0847.76069
[22] Kopriva, D. A., A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method, J. Comput. Phys., 128, 2, 475-488 (1996) · Zbl 0866.76064
[23] Liu, Y.; Vinokur, M.; Wang, Z. J., Spectral difference method for unstructured grids I: basic formulation, J. Comput. Phys., 216, 2, 780-801 (2006) · Zbl 1097.65089
[24] Wang, Z. J.; Liu, Y.; May, G.; Jameson, A., Spectral difference method for unstructured grids II: extension to the Euler equations, J. Sci. Comput., 32, 1, 45-71 (2007) · Zbl 1151.76543
[25] May, G.; Jameson, A., A spectral difference method for the Euler and Navier-Stokes equations on unstructured meshes, (44th AIAA Aerospace Sciences Meeting and Exhibit (2006))
[26] Sun, Y.; Wang, Z. J.; Liu, Y., High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids, Commun. Comput. Phys., 2, 2, 310-333 (2007) · Zbl 1164.76360
[27] Chen, W.; Ju, Y.; Zhang, C., A collocated-grid spectral difference method for compressible flows, Comput. Fluids, 196, Article 104341 pp. (2020) · Zbl 1519.76227
[28] Liang, C.; Cox, C.; Plesniak, M., A comparison of computational efficiencies of spectral difference method and correction procedure via reconstruction, J. Comput. Phys., 239, 138-146 (2013)
[29] Cox, C.; Trojak, W.; Dzanic, T.; Witherden, F.; Jameson, A., Accuracy, stability, and performance comparison between the spectral difference and flux reconstruction schemes (2020) · Zbl 1521.76196
[30] May, G., On the connection between the spectral difference method and the discontinuous Galerkin method, Commun. Comput. Phys., 9, 4, 1071-1080 (2011) · Zbl 1364.65255
[31] Van den Abeele, K.; Lacor, C.; Wang, Z. J., On the connection between the spectral volume and the spectral difference method, J. Comput. Phys., 227, 2, 877-885 (2007) · Zbl 1134.65075
[32] Van den Abeele, K.; Lacor, C.; Wang, Z. J., On the stability and accuracy of the spectral difference method, J. Sci. Comput., 37, 2, 162-188 (2008) · Zbl 1203.65132
[33] Jameson, A., A proof of the stability of the spectral difference method for all orders of accuracy, J. Sci. Comput., 45, 1-3, 348-358 (2010) · Zbl 1203.65198
[34] Wang, Z. J.; Liu, Y., The Spectral Difference Method for the 2D Euler Equations on Unstructured Grids (2005), 17th AIAA computational Fluid Dynamics Conference, AIAA Paper 2005-5112
[35] Liu, Y.; Vinokur, M.; Wang, Z. J., Discontinuous spectral difference method for conservation laws on unstructured grids, (Computational Fluid Dynamics 2004. Computational Fluid Dynamics 2004, Toronto. Computational Fluid Dynamics 2004. Computational Fluid Dynamics 2004, Toronto, Proceedings of the Third International Conference on Computational Fluid Dynamics (ICCFD3) (12-16 July 2004, 2006)), 449-454
[36] Liang, C.; Kannan, R.; Wang, Z. J., A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured grids (2007), AIAA Paper 2007-4326
[37] Liang, C.; Jameson, A.; Wang, Z. J., Spectral difference method for compressible flow on unstructured grids with mixed elements, J. Comput. Phys., 228, 8, 2847-2858 (2009) · Zbl 1159.76029
[38] Balan, A.; May, G.; Schöberl, J., A stable and spectral difference and method for triangles, (49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011))
[39] Balan, A.; May, G.; Schöberl, J., A stable high-order spectral difference method for hyperbolic conservation laws on triangular elements, J. Comput. Phys., 231, 5, 2359-2375 (2012) · Zbl 1242.65155
[40] May, G.; Schöberl, J., Analysis of a Spectral Difference Scheme with Flux Interpolation on Raviart-Thomas Elements (2010), Aachen Institute for Advanced Study in Computational Engineering Science, Tech. rep.
[41] Li, M.; Qiu, Z.; Liang, C.; Sprague, M.; Xu, M.; Garris, C. A., A new high-order spectral difference method for simulating viscous flows on unstructured grids with mixed-element meshes, Comput. Fluids, 184, 187-198 (2019) · Zbl 1519.76214
[42] Qiu, Z.; Zhang, B.; Liang, C.; Xu, M., A high-order solver for simulating vortex-induced vibrations using sliding-mesh spectral difference method and hybrid grids, Int. J. Numer. Methods Fluids, 90, 171-194 (2019)
[43] Meister, A.; Ortleb, S.; Sonar, T.; Wirz, M., A comparison of the discontinuous-Galerkin and spectral-difference method on triangulations using PKD polynomials, J. Comput. Phys., 231, 7722-7729 (2012) · Zbl 1257.65054
[44] Pawlak, M.; Sonar, T., A spectral difference method with dubiner polynomials on triangulations, (Series in Contemporary Applied Mathematics (2012), Co-Published with Higher Education Press), 610-616 · Zbl 1303.65070
[45] Blyth, M. G.; Pozrikidis, C., A Lobatto interpolation grid over the triangle, IMA J. Appl. Math., 71, 1, 153-169 (2006) · Zbl 1114.41001
[46] Cassagne, A.; Boussuge, J.-F.; Villedieu, N.; Puigt, G.; D’Ast, I.; Genot, A., JAGUAR: a new CFD code dedicated to massively parallel high-order LES computations on complex geometry, (50th 3AF International Conference on Applied Aerodynamics (2015))
[47] Vanharen, J.; Puigt, G.; Vasseur, X.; Boussuge, J.-F.; Sagaut, P., Revisiting the spectral analysis for high-order spectral discontinuous methods, J. Comput. Phys., 337, 379-402 (2017) · Zbl 1415.76577
[48] Cassagne, A.; Puigt, G.; Boussuge, J., High-order method for a new generation of large eddy simulation solver (2015), Tech. Rep., Partnership for Advanced Computing in Europe (PRACE), available online at
[49] Poinsot, T.; Lele, S., Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., 101, 104-129 (1992) · Zbl 0766.76084
[50] Fiévet, R.; Deniau, H.; Brazier, J.; Piot, E., Numerical study of hypersonic boundary-layer transition delay through second-mode absorption, AIAA Scitech 2020 Forum, AIAA Paper 2020-2061
[51] Fiévet, R.; Deniau, H.; Piot, E., Strong compact formalism for characteristic boundary conditions with discontinuous spectral methods, J. Comput. Phys., 408, Article 109276 pp. (2020) · Zbl 07505612
[52] Wang, Z. J., High-order methods for the Euler and Navier-Stokes equations on unstructured grids, Prog. Aerosp. Sci., 43, 1-41 (2007)
[53] Karniadakis, G. E.; Sherwin, S. J., Spectral/HP Element Methods for Computational Fluid Dynamics (2005), Oxford University Press: Oxford University Press Oxford · Zbl 1116.76002
[54] Proriol, J., Sur une famille de polynômes à deux variables orthogonaux dans un triangle, C. R. Math. Acad. Sci. Paris, 257, 2459-2461 (1957) · Zbl 0080.05204
[55] Koornwinder, T., Two-variable analogues of the classical orthogonal polynomials, (Askey, R., Theory and Applications of Special Functions. Theory and Applications of Special Functions, San Diego (1975)) · Zbl 0326.33002
[56] Dubiner, M., Spectral methods on triangles and other domains, J. Sci. Comput., 6, 4, 345-390 (1991) · Zbl 0742.76059
[57] Pena, G., Spectral element approximation of the incompressible Navier-Stokes equations in a moving domain and applications (2009), Ecole Polytechnique Fédérale de Lausanne, Ph.D. thesis
[58] Williams, D., Energy stable high-order methods for simulating unsteady, viscous, compressible flows on unstructured grids (2013), Stanford University, Ph.D. thesis
[59] Castonguay, P., High-order energy stable flux reconstruction schemes for fluid flow simulations on unstructured grids (2012), Stanford University, Ph.D. thesis
[60] Veilleux, A., Extension of the Spectral Difference method to simplex cells and hybrid grids (2021), Cerfacs and Onera, Ph.D. thesis
[61] Hammer, P.; Marlowe, O.; Stroud, A., Numerical integration over simplexes and cones, Math. Tables Other Aids Comput., 10, 55, 130-137 (1956) · Zbl 0070.35404
[62] Laursen, M.; Gellert, M., Some criteria for numerically integrated matrices and quadrature formulas for triangles, Int. J. Numer. Methods Eng., 12, 1, 67-76 (1978) · Zbl 0379.65014
[63] Dunavant, D., High degree efficient symmetrical Gaussian quadrature rules for the triangle, Int. J. Numer. Methods Eng., 21, 6, 1129-1148 (1985) · Zbl 0589.65021
[64] Zhang, L.; Cui, T.; Liu, H., A set of symmetric quadrature rules on triangles and tetrahedra, J. Comput. Math., 27, 89-96 (2009) · Zbl 1199.65081
[65] Xiao, H.; Gimbutas, Z., A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions, Comput. Math. Appl., 59, 2, 663-676 (2010) · Zbl 1189.65047
[66] Vioreanu, B.; Rokhlin, V., Spectra of multiplication operators as a numerical tool, SIAM J. Sci. Comput., 36, 267-288 (2014) · Zbl 1292.65028
[67] Williams, D.; Shunn, L.; Jameson, A., Symmetric quadrature rules for simplexes based on sphere close packed lattice arrangements, J. Comput. Appl. Math., 266, 18-38 (2014) · Zbl 1293.65039
[68] Cowper, G., Gaussian quadrature formulas for triangles, Int. J. Numer. Methods Eng., 7, 3, 405-408 (1973) · Zbl 0265.65013
[69] Lyness, J.; Jespersen, D., Moderate degree symmetric quadrature rules for the triangle, IMA J. Appl. Math., 15, 1, 19-32 (1975) · Zbl 0297.65018
[70] Witherden, F.; Vincent, P., On the identification of symmetric quadrature rules for finite element methods, Comput. Math. Appl., 69, 1232-1241 (2015) · Zbl 1443.65378
[71] Papanicolopulos, S.-A., Computation of moderate-degree fully symmetric cubature rules on the triangle using symmetric polynomials and algebraic solving, Comput. Math. Appl., 69, 650-666 (2015) · Zbl 1443.65028
[72] Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R.J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P., SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in python, Nat. Methods, 17, 261-272 (2020)
[73] Gottlieb, S.; Shu, C., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 221, 73-85 (1998) · Zbl 0897.65058
[74] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 1, 89-112 (2001) · Zbl 0967.65098
[75] Chalmers, N.; Krivodonova, L., A robust CFL condition for the discontinuous Galerkin method on triangular meshes, J. Comput. Phys., 403 (2020) · Zbl 1453.65267
[76] https://how5.cenaero.be/
[77] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 2, 357-372 (1981) · Zbl 0474.65066
[78] Wandzura, S.; Xiao, H., Symmetric quadrature rules on a triangle, Comput. Math. Appl., 45, 1829-1840 (2003) · Zbl 1050.65022
[79] Swanson, R. C.; Langer, S., Comparison of NACA 0012 Laminar Flow Solutions: Structured and Unstructured Grid Methods (2016), NASA Langley Research Center, Technical Memorandum NASA-TM-2016-219003 · Zbl 1390.76065
[80] Sun, Y.; Wang, Z. J.; Liu, Y., Efficient implicit non-linear LU-SGS approach for compressible flow computation using high-order spectral difference method, Commun. Comput. Phys., 5, 2-4, 760-778 (2009) · Zbl 1364.76139
[81] Dennis, S. C.R.; Chang, G.-Z., Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, J. Fluid Mech., 42, 3, 471-489 (1970) · Zbl 0193.26202
[82] Russell, D.; Wang, Z. Jane, A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow, J. Comput. Phys., 191, 1, 177-205 (2003) · Zbl 1160.76389
[83] Calhoun, D., A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions, J. Comput. Phys., 176, 2, 231-275 (2002) · Zbl 1130.76371
[84] Raviart, P.; Thomas, J., A mixed finite element method for 2nd order elliptic problem, (Lecture Notes in Mathematics, vol. 606 (1977)), 292-315 · Zbl 0362.65089
[85] Nedelec, J., Mixed finite elements in R3, Numer. Math., 35, 315-341 (1980) · Zbl 0419.65069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.