×

A frequency-dependent \(p\)-adaptive technique for spectral methods. (English) Zbl 07516450

Summary: When using spectral methods, a consistent method for tuning the expansion order is often required, especially for time-dependent problems in which oscillations emerge in the solution. In this paper, we propose a frequency-dependent \(p\)-adaptive technique that adaptively adjusts the expansion order based on a frequency indicator. Using this \(p\)-adaptive technique, combined with recently proposed scaling and moving techniques, we are able to devise an adaptive spectral method in unbounded domains that can capture and handle diffusion, advection, and oscillations. As an application, we use this adaptive spectral method to numerically solve Schrödinger’s equation in an unbounded domain and successfully capture the solution’s oscillatory behavior at infinity.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Nxx Numerical methods for partial differential equations, boundary value problems
35Qxx Partial differential equations of mathematical physics and other areas of application

References:

[1] Tsynkov, S., Numerical solution of problems on unbounded domains. A review, Appl. Numer. Math., 27, 465-532 (1998) · Zbl 0939.76077
[2] Xia, M.; Greenman, C. D.; Chou, T., PDE models of adder mechanisms in cellular proliferation, SIAM J. Appl. Math., 80, 1307-1335 (2020) · Zbl 07212798
[3] Tang, H.; Tang, T., Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal., 41, 487-515 (2003) · Zbl 1052.65079
[4] Babuska, I.; Flaherty, J. E.; Henshaw, W. D.; Hopcroft, J. E.; Oliger, J. E.; Tezduyar, T., Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, Vol. 75 (2012), Springer Science & Business Media
[5] Ren, W.; Wang, X.-P., An iterative grid redistribution method for singular problems in multiple dimensions, J. Comput. Phys., 159, 246-273 (2000) · Zbl 0959.65129
[6] Li, R.; Liu, W.; Ma, H.; Tang, T., Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41, 1321-1349 (2002) · Zbl 1034.49031
[7] Shen, J.; Wang, L. L., Some recent advances on spectral methods for unbounded domains, Commun. Comput. Phys., 5, 195-241 (2009) · Zbl 1364.65265
[8] Xia, M.; Shao, S.; Chou, T., Efficient scaling and moving techniques for spectral methods in unbounded domains (2020), SIAM J. Sci. Comput., to appear.
[9] Shao, S.; Lu, T.; Cai, W., Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport, Commun. Comput. Phys., 9, 711-739 (2011) · Zbl 1364.65211
[10] Dumbser, M.; Käser, M.; Toro, E. F., An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes, V: local time stepping and p-adaptivity, Geophys. J. Int., 171, 695-717 (2007)
[11] Karihaloo, B. L.; Xiao, Q., Accurate determination of the coefficients of elastic crack tip asymptotic field by a hybrid crack element with p-adaptivity, Eng. Fract. Mech., 68, 1609-1630 (2001)
[12] Yang, X.; Zhang, J., Computation of the Schrödinger equation in the semiclassical regime on an unbounded domain, SIAM J. Numer. Anal., 52, 808-831 (2014) · Zbl 1300.65062
[13] Han, H.; Jin, J.; Wu, X., A finite-difference method for the one-dimensional time-dependent Schrödinger equation on unbounded domain, Comput. Math. Appl., 50, 1345-1362 (2005) · Zbl 1092.65071
[14] Li, B.; Zhang, J.; Zheng, C., Stability and error analysis for a second-order fast approximation of the one-dimensional Schrödinger equation under absorbing boundary conditions, SIAM J. Sci. Comput., 40, A4083-A4104 (2018) · Zbl 1412.65119
[15] Antoine, X.; Arnold, A.; Besse, C.; Ehrhardt, M.; Schädle, A., A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys., 4, 729-796 (2008) · Zbl 1364.65178
[16] Hou, T. Y.; Li, R., Computing nearly singular solutions using pseudo-spectral methods, J. Comput. Phys., 226, 379-397 (2007) · Zbl 1310.76127
[17] Orszag, S. A., On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components, J. Atmos. Sci., 28, 1074 (1971)
[18] Shen, J.; Tang, T.; Wang, L. L., Spectral Methods: Algorithms, Analysis and Applications (2011), Springer Science & Business Media: Springer Science & Business Media New York · Zbl 1227.65117
[19] Moler, C.; Van Loan, C., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 20, 801-836 (1978) · Zbl 0395.65012
[20] Sheng, C.; Shen, J.; Tang, T.; Wang, L.-L.; Yuan, H., Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains, SIAM J. Numer. Anal., 58, 2435-2464 (2020) · Zbl 1450.65154
[21] Canuto, C.; Nochetto, R. H.; Stevenson, R.; Verani, M., On p-robust saturation for hp-AFEM, Comput. Math. Appl., 73, 2004-2022 (2017) · Zbl 1373.65082
[22] Antonietti, P.; Canuto, C.; Verani, M., An adaptive hp-DG-FE method for elliptic problems: convergence and optimality in the 1D Case, Commun. Appl. Math. Comput., 1, 309-331 (2019) · Zbl 1449.65310
[23] Guo, B.-Y.; Wang, L.-L., Jacobi interpolation approximations and their applications to singular differential equations, Adv. Comput. Math., 14, 227-276 (2001) · Zbl 0984.41004
[24] Taha, T. R.; Ablowitz, M. J., Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation, J. Comput. Phys., 55, 203-230 (1984) · Zbl 0541.65082
[25] Iserles, A.; Kropielnicka, K.; Singh, P., Solving Schrödinger equation in semiclassical regime with highly oscillatory time-dependent potentials, J. Comput. Phys., 376, 564-584 (2019) · Zbl 1416.81064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.