×

A fourth-order compact time-splitting method for the Dirac equation with time-dependent potentials. (English) Zbl 07506534

Summary: In this paper, we present an approach to deal with the dynamics of the Dirac equation with time-dependent electromagnetic potentials using the fourth-order compact time-splitting method (\(S_{4\mathrm{c}}\)). To this purpose, the time-ordering technique for time-dependent Hamiltonians is introduced, so that the influence of the time-dependence could be limited to certain steps which are easy to treat. Actually, in the case of the Dirac equation, it turns out that only those steps involving potentials need to be amended, and the scheme remains efficient, accurate, as well as easy to implement. Numerical examples in 1D and 2D are given to validate the scheme.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Qxx Partial differential equations of mathematical physics and other areas of application
81Qxx General mathematical topics and methods in quantum theory

Software:

Dirac++

References:

[1] Antoine, X.; Lorin, E., Computational performance of simple and efficient sequential and parallel Dirac equation solvers, Comput. Phys. Commun., 220, 150-172 (2017) · Zbl 1411.35234
[2] Antoine, X.; Lorin, E.; Sater, J.; Fillion-Gourdeau, F.; Bandrauk, A. D., Absorbing boundary conditions for relativistic quantum mechanics equations, J. Comput. Phys., 277, 268-304 (2014) · Zbl 1349.81080
[3] Bao, W.; Cai, Y.; Jia, X.; Tang, Q., A uniformly accurate multiscale time integrator pseudospectral method for the Dirac equation in the nonrelativistic limit regime, SIAM J. Numer. Anal., 54, 1785-1812 (2016) · Zbl 1346.35171
[4] Bao, W.; Cai, Y.; Jia, X.; Tang, Q., Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime, J. Sci. Comput., 71, 1094-1134 (2017) · Zbl 1370.81053
[5] Bao, W.; Cai, Y.; Jia, X.; Yin, J., Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime, Sci. China Math., 59, 1461-1494 (2016) · Zbl 1365.65208
[6] Bao, W.; Cai, Y.; Yin, J., Super-resolution of the time-splitting methods for the Dirac equation in the nonrelativistic regime, Math. Comput., 89, 2141-2173 (2020) · Zbl 1440.35286
[7] Bao, W.; Li, X., An efficient and stable numerical method for the Maxwell-Dirac system, J. Comput. Phys., 199, 663-687 (2004) · Zbl 1056.81080
[8] Bao, W.; Yin, J., A fourth-order compact time-splitting Fourier pseudospectral method for the Dirac equation, Res. Math. Sci., 6, Article 11 pp. (2019) · Zbl 1433.65234
[9] Boada, O.; Celi, A.; Latorre, J. I.; Lewenstein, M., Dirac equation for cold atoms in artificial curved spacetimes, New J. Phys., 13, Article 035002 pp. (2011) · Zbl 1448.81302
[10] Braun, J. W.; Su, Q.; Grobe, R., Numerical approach to solve the time-dependent Dirac equation, Phys. Rev. A, 59, 1, 604-612 (1999)
[11] Cai, Y.; Wang, Y., Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime, SIAM J. Numer. Anal., 57, 1602-1624 (2019) · Zbl 1421.35307
[12] Chen, Y. L.; Chu, J.-H.; Analytis, J. G.; Liu, Z. K.; Igarashi, K.; Kuo, H.-H.; Qi, X. L.; Mo, S. K.; Moore, R. G.; Lu, D. H.; Hashimoto, M.; Sasagawa, T.; Zhang, S. C.; Fisher, I. R.; Hussain, Z.; Shen, Z. X., Massive Dirac fermion on the surface of a magnetically doped topological insulator, Science, 329, 659-662 (2010)
[13] Chin, S. A., Symplectic integrators from composite operator factorizations, Phys. Lett. A, 226, 344-348 (1997) · Zbl 0962.65501
[14] Chin, S. A.; Chen, C. R., Fourth order gradient symplectic integrator methods for solving the time-dependent Schrödinger equation, J. Chem. Phys., 114, 7338-7341 (2001)
[15] Chin, S. A.; Chen, C. R., Gradient symplectic algorithms for solving the Schrödinger equation with time-dependent potentials, J. Chem. Phys., 117, 1409-1415 (2002)
[16] Das, A., General solutions of Maxwell-Dirac equations in \(1 + 1\) dimensional space-time and spatial confined solution, J. Math. Phys., 34, 3986-3999 (1993) · Zbl 0780.35107
[17] Das, A.; Kay, D., A class of exact plane wave solutions of the Maxwell-Dirac equations, J. Math. Phys., 30, 2280-2284 (1989) · Zbl 0701.58059
[18] Dombey, N.; Calogeracos, A., Seventy years of the Klein paradox, Phys. Rep., 315, 1-3, 41-58 (1999) · Zbl 0924.35117
[19] Du, X.; Skachko, I.; Duerr, F.; Luican, A.; Andrei, E. Y., Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature, 462, 192-195 (2009)
[20] Esteban, M.; Séré, E., Existence and multiplicity of solutions for linear and nonlinear Dirac problems, (Partial Differential Equations and Their Applications (1997)), 107-118 · Zbl 0889.35084
[21] Fefferman, C. L.; Weistein, M. I., Honeycomb lattice potentials and Dirac points, J. Am. Math. Soc., 25, 1169-1220 (2012) · Zbl 1316.35214
[22] Fefferman, C. L.; Weistein, M. I., Wave packets in honeycomb structures and two-dimensional Dirac equations, Commun. Math. Phys., 326, 251-286 (2014) · Zbl 1292.35195
[23] Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A. D., Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling, Comput. Phys. Commun., 183, 7, 1403-1415 (2012) · Zbl 1295.35363
[24] Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A. D., Resonantly enhanced pair production in a simple diatomic model, Phys. Rev. Lett., 110, Article 013002 pp. (2013)
[25] Forest, E.; Ruth, R. D., Fourth-order symplectic integration, Phys. D, Nonlinear Phenom., 43, 105-117 (1990) · Zbl 0713.65044
[26] Geng, S., Symplectic partitioned Runge-Kutta methods, J. Comput. Math., 11, 365-372 (1993) · Zbl 0789.65049
[27] Gesztesy, F.; Grosse, H.; Thaller, B., A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles, Ann. Inst. Henri Poincaré A, Phys. Théor., 40, 159-174 (1984) · Zbl 0534.46053
[28] Goldman, N.; Kubasiak, A.; Bermudez, A.; Gaspard, P.; Lewenstein, M.; Martin-Delgado, M. A., Non-abelian optical lattices: anomalous quantum Hall effect and Dirac fermions, Phys. Rev. Lett., 103, Article 035301 pp. (2009)
[29] Greiner, W., Relativistic Quantum Mechanics: Wave Equations (1990), Springer · Zbl 0718.35078
[30] Greiner, W.; Muller, B.; Rafelski, J., Quantum Electrodynamics of Strong Fields (1985), Springer-Verlag
[31] Gross, L., The Cauchy problem for the coupled Maxwell and Dirac equations, Commun. Pure Appl. Math., 19, 1-15 (1966) · Zbl 0137.32401
[32] Hammer, R.; Pötz, W., Staggered grid leap-frog scheme for the (2+1) D Dirac equation, Comput. Phys. Commun., 185, 40-52 (2014) · Zbl 1344.65080
[33] Huang, Z.; Jin, S.; Markowich, P. A.; Sparber, C.; Zheng, C., A time-splitting spectral scheme for the Maxwell-Dirac system, J. Comput. Phys., 208, 761-789 (2005) · Zbl 1070.81040
[34] Klein, O., Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac, Z. Phys. Hadrons Nucl., 53, 157-165 (1929) · JFM 55.0527.04
[35] Krekora, P.; Su, Q.; Grobe, R., Klein paradox in spatial and temporal resolution, Phys. Rev. Lett., 92, 4, Article 040406 pp. (2004)
[36] Ma, Y.; Yin, J., Error bounds of the finite difference time domain methods for the Dirac equation in the semiclassical regime, J. Sci. Comput., 81, 1801-1822 (2019) · Zbl 1453.65228
[37] McLachlan, R. I.; Quispel, G. R.W., Splitting methods, Acta Numer., 11, 341-434 (2002) · Zbl 1105.65341
[38] Mocken, G. R.; Keitel, C. H., FFT-split-operator code for solving the Dirac equation in 2+1 dimensions, Comput. Phys. Commun., 178, 868-882 (2008) · Zbl 1196.81031
[39] Momberger, K.; Belkacem, A.; Sørensen, A. H., Numerical treatment of the time-dependent Dirac equation in momentum space for atomic processes in relativistic heavy-ion collisions, Phys. Rev. A, 53, 3, 1605-1622 (1996)
[40] Neto, A. H.C.; Guinea, F.; Peres, N. M.R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene, Rev. Mod. Phys., 81, 109-162 (2009)
[41] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197-200 (2005)
[42] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films, Science, 306, 666-669 (2004)
[43] Nraun, J. W.; Su, Q.; Grobe, R., Numerical approach to solve the time-dependent Dirac equation, Phys. Rev. A, 59, 604-612 (1999)
[44] Ring, P., Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys., 37, 193-263 (1996)
[45] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 507-517 (1968) · Zbl 0184.38503
[46] Suzuki, M., Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A, 146, 319-323 (1990)
[47] Suzuki, M., General theory of fractal path integrals with applications to many-body theories and statistical physics, J. Math. Phys., 32, 400-407 (1991) · Zbl 0735.47009
[48] Suzuki, M., General decomposition theory of ordered exponentials, Proc. Jpn. Acad., 69, 161-166 (1993)
[49] Suzuki, M., New scheme of hybrid exponential product formulas with applications to quantum Monte-Carlo simulations, Springer Proc. Phys., 80, 169-174 (1995)
[50] Trotter, H. F., On the product of semi-groups of operators, Proc. Am. Math. Soc., 10, 545-551 (1959) · Zbl 0099.10401
[51] Wu, H.; Huang, Z.; Jin, S.; Yin, D., Gaussian beam methods for the Dirac equation in the semi-classical regime, Commun. Math. Sci., 10, 1301-1305 (2012) · Zbl 1281.65133
[52] Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z., Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys., 5, 398-402 (2009)
[53] Yoshida, H., Construction of higher order symplectic integrators, Phys. Lett. A, 150, 262-268 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.