×

Complexity-reduction using automatic level grouping for atomic collisional-radiative models. (English) Zbl 07504694

Summary: In a previous work that investigated atomic collisional-radiative models, Boltzmann grouping was implemented to reduce and accelerate detailed-configuration-accounting or DCA-based CR simulations, exhibiting distinct advantages over other CR reduction techniques. However, the selection of level groups under this reduction technique was manually performed and required several iterations to construct the appropriate groups that properly showed the advantages associated with Boltzmann grouping. Therefore, a clustering technique was implemented to automatically group detailed (LS-coupled) atomic states with limited user interference. Clustering in conjunction with the Boltzmann grouping technique were applied to collisional and coronal simulations in this work to demonstrate the feasibility of automatic level grouping techniques to produce accurate reduced simulations under various plasma conditions.

MSC:

68-XX Computer science
82-XX Statistical mechanics, structure of matter

Software:

FLYCHK
Full Text: DOI

References:

[1] Mazouffre, S., Electric propulsion for satellites and spacecraft: established technologies and novel approaches, Plasma Sources Sci. Technol., 25, 3, Article 033002 pp. (2016)
[2] Bathgate, S. N.; Bilek, M. M.; McKenzie, D. R., Electrodeless plasma thrusters for spacecraft: a review, Plasma Sci. Technol., 19, 8, Article 083001 pp. (2017)
[3] McKenna, P.; Neely, D.; Bingham, R.; Jaroszynski, D. A., Laser-Plasma Interactions and Applications (2013), Springer: Springer Heidelberg
[4] Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; Schmitt, A. J.; Sethian, J. D.; Short, R. W.; Skupsky, S.; Theobald, W.; Kruer, W. L.; Tanaka, K.; Betti, R.; Collins, T. J.B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Solodov, A. A.; Soures, J. M.; Stoeckl, C.; Zuegel, J. D., Direct-drive inertial confinement fusion: a review, Phys. Plasmas, 22, 11, Article 0 pp. (2015)
[5] Kilcrease, D. P.; Abdallah, J.; Keady, J. J.; Clark, R. E.H., Atomic configuration average simulations for plasma spectroscopy, J. Phys. B, At. Mol. Opt. Phys., 26, 20, L717-L723 (1993)
[6] Peyrusse, O., Atomic configuration averages and non-local thermodynamical equilibrium plasma spectroscopy calculations, J. Phys. B, At. Mol. Opt. Phys., 32, 3, 683 (1999)
[7] Hansen, S. B.; Fournier, K. B.; Bauche-Arnoult, C.; Bauche, J.; Peyrusse, O., A comparison of detailed level and superconfiguration models of neon, J. Quant. Spectrosc. Radiat. Transf., 99, 1-3, 272-282 (2006)
[8] Liu, Y.; Panesi, M.; Sahai, A.; Vinokur, M., General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures, J. Chem. Phys., 142, 13, Article 134109 pp. (2015)
[9] Le, H. P.; Karagozian, A. R.; Cambier, J. L., Complexity reduction of collisional-radiative kinetics for atomic plasma, Phys. Plasmas, 20, 12, Article 123304 pp. (2013)
[10] Fournier, K. B.; Bauche, J.; Bauche-Arnoult, C., Evidence for a temperature law in non-LTE hot plasmas, J. Phys. B, At. Mol. Opt. Phys., 33, 21, 4891-4904 (2000)
[11] Bauche, J.; Bauche-Arnoult, C., Temperatures in non-LTE hot plasmas, J. Phys. B, At. Mol. Opt. Phys., 33, 8, L283-L288 (2000)
[12] Bauche, J.; Bauche-Arnoult, C.; Peyrusse, O., Effective temperatures in hot dense plasmas, J. Quant. Spectrosc. Radiat. Transf., 99, 1-3, 55-66 (2006)
[13] Abrantes, R. J.E.; Karagozian, A. R.; Bilyeu, D.; Le, H. P., Complexity reduction effects on transient, atomic plasmas, J. Quant. Spectrosc. Radiat. Transf., 216, 47-55 (2018)
[14] Bauche-Arnoult, C.; Bauche, J., The temperature law for superconfigurations in non-LTE plasmas, J. Quant. Spectrosc. Radiat. Transf., 71, 2-6, 189-199 (2001)
[15] Bauche, J.; Bauche-Arnoult, C.; Fournier, K. B., Model for computing superconfiguration temperatures in nonlocal-thermodynamic-equilibrium hot plasmas, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., 69, 2, Article 026403 pp. (2004)
[16] Bellemans, A.; Munafò, A.; Magin, T. E.; Degrez, G.; Parente, A., Reduction of a collisional-radiative mechanism for argon plasma based on principal component analysis, Phys. Plasmas, 22, 6, Article 062108 pp. (2015)
[17] Sahai, A.; Lopez, B.; Johnston, C. O.; Panesi, M., Adaptive coarse graining method for energy transfer and dissociation kinetics of polyatomic species, J. Chem. Phys., 147, 5, Article 054107 pp. (2017)
[18] Stambulchik, E., cFAC
[19] Gu, M. F., The flexible atomic code, Can. J. Phys., 86, 5, 675-689 (2008)
[20] Genz, A. C.; Malik, A. A., Remarks on algorithm 006: an adaptive algorithm for numerical integration over an N-dimensional rectangular region, J. Comput. Appl. Math., 6, 4, 295-302 (1980) · Zbl 0443.65009
[21] Oxenius, J., Kinetic Theory of Particles and Photons: Theoretical Foundations of Non-LTE Plasma Spectroscopy (2012), Springer
[22] Schulz, H.; Behnke, S., Learning object-class segmentation with convolutional neural networks, (ESANN 2012 Proceedings, 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2012)), 151-156
[23] Von Luxburg, U., A tutorial on spectral clustering, Stat. Comput., 17, 4, 395-416 (2007)
[24] MacQueen, J., Some methods for classification and analysis of multivariate observations, 5th Berkeley Symp. Math. Stat. Probab., 1, 14, 281-297 (1967), citeulike-article-id:6083430 · Zbl 0214.46201
[25] Kaufman, L.; Rousseeuw, P. J., Clustering by Means of Medoids (1987), North-Holland: North-Holland Amsterdam
[26] Park, H. S.; Jun, C. H., A simple and fast algorithm for K-medoids clustering, Expert Syst. Appl., 36, 2, 3336-3341 (2009)
[27] Ait Oumeziane, A.; Liani, B.; Parisse, J. D., Non-equilibrium modeling of UV laser induced plasma on a copper target in the presence of Cu^2+, Phys. Plasmas, 23, 3, Article 033502 pp. (2016)
[28] Steinhauer, L. C., Review of field-reversed configurations, Phys. Plasmas, 18, 7, Article 070501 pp. (2011)
[29] Scott, H. A.; Hansen, S. B., Advances in NLTE modeling for integrated simulations, High Energy Density Phys., 6, 1, 39-47 (2010)
[30] Acton, L. W., Radiative transfer of X-rays in the solar corona, Astrophys. J., 225, 1069-1075 (1978)
[31] Kuin, N. P.M.; Poland, A. I., Opacity effects on the radiative losses of coronal loops, Astrophys. J., 370, 763-774 (1991)
[32] Summers, H. P., The ADAS User Manual, version 2.6 (2004)
[33] Chung, H. K.; Chen, M. H.; Morgan, W. L.; Ralchenko, Y.; Lee, R. W., FLYCHK: generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements, High Energy Density Phys., 1, 1, 3-12 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.