×

Generalized spatially varying coefficient models. (English) Zbl 07499877

Summary: In this article, we introduce a new class of nonparametric regression models, called generalized spatially varying coefficient models (GSVCMs), for data distributed over complex domains. For model estimation, we propose a nonparametric quasi-likelihood approach using the bivariate penalized spline approximation technique. We show that our estimation procedure is able to handle irregularly-shaped spatial domains with complex boundaries. Under some regularity conditions, the estimator for the coefficient function is proved to be consistent in the \(L_2\) sense and its convergence rate is established. We develop a numerically stable algorithm using penalized iteratively reweighted least squares method to estimate the coefficient functions in GSVCMs. To gain efficiency in the computation for large-scale data, we further propose a QR decomposition-based algorithm, which requires only sub-blocks of the design matrix to be computed at a time, so that it allows efficient estimation of GSVCMs for large datasets with modest computer hardware. The finite sample performance of the GSVCM and its estimation method is examined by simulations studies. The proposed method is also illustrated by an analysis of the crash data in Florida. Supplementary materials for this article are available online.

MSC:

62-XX Statistics
Full Text: DOI

References:

[1] Azzimonti, L.; Sangalli, L. M.; Secchi, P.; Domanin, M.; Nobile, F., “Blood Flow Velocity Field Estimation via Spatial Regression With PDE Penalization, Journal of the American Statistical Association, 110, 1057-1071 (2015) · Zbl 1373.62534 · doi:10.1080/01621459.2014.946036
[2] Brunsdon, C.; Fotheringham, A. S.; Charlton, E. M., “Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity, Geographical Analysis, 28, 281-298 (1996) · doi:10.1111/j.1538-4632.1996.tb00936.x
[3] Carroll, R. J.; Fan, J.; Gijbels, I.; Wand, M. P., “Generalized Partially Linear Single-Index Models, Journal of the American Statistical Association, 92, 477-489 (1997) · Zbl 0890.62053 · doi:10.1080/01621459.1997.10474001
[4] Fan, J.; Zhang, W., “Statistical Methods With Varying Coefficient Models, Statistics and Its Interface, 1, 179-195 (2008) · Zbl 1230.62031 · doi:10.4310/sii.2008.v1.n1.a15
[5] Fotheringham, A. S.; Brunsdon, C.; Charlton, E. M., Geographically Weighted Regression: The Analysis of Spatially Varying Relationships (2002), Chichester: Wiley, Chichester
[6] Hastie, T.; Tibshirani, R., “Varying-Coefficient Models, Journal of the Royal Statistical Society, Series B, 55, 757-796 (1993) · Zbl 0796.62060 · doi:10.1111/j.2517-6161.1993.tb01939.x
[7] Lai, M. J.; Schumaker, L. L., Spline Functions on Triangulations (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1185.41001
[8] Lai, M. J.; Wang, L., “Bivariate Penalized Splines for Regression, Statistica Sinica, 23, 1399-1417 (2013) · Zbl 1534.62052 · doi:10.5705/ss.2010.278
[9] Liu, R.; Yang, L.; Härdle, W. K., “Oracally Efficient Two-Step Estimation of Generalized Additive Model, Journal of the American Statistical Association, 108, 619-631 (2013) · Zbl 1534.62054 · doi:10.1080/01621459.2013.763726
[10] Mu, J.; Wang, G.; Wang, L., “Estimation and Inference in Spatially Varying Coefficient Models, Environmetrics, 29, e2485 (2018) · doi:10.1002/env.2485
[11] Park, B. U.; Mammen, E.; Lee, Y. K.; Lee, E. R., “Varying Coefficient Regression Models: A Review and New Developments, International Statistical Review, 83, 36-64 (2015) · Zbl 07762792 · doi:10.1111/insr.12029
[12] Ramsay, T., “Spline Smoothing Over Difficult Regions, Journal of the Royal Statistical Society, Series B, 64, 307-319 (2002) · Zbl 1067.62037 · doi:10.1111/1467-9868.00339
[13] Sangalli, L.; Ramsay, J.; Ramsay, T., “Spatial Spline Regression Models, Journal of the Royal Statistical Society, Series B, 75, 681-703 (2013) · Zbl 1411.62134 · doi:10.1111/rssb.12009
[14] Scott-Hayward, L. A. S.; MacKenzie, M. L.; Donovan, C. R.; Walker, C.; Ashe, E., “Complex Region Spatial Smoother (CReSS), Journal of Computational and Graphical Statistics, 23, 340-360 (2014) · doi:10.1080/10618600.2012.762920
[15] Sun, Y.; Yan, H.; Zhang, W.; Lu, Z., “A Semiparametric Spatial Dynamic Model, The Annals of Statistics, 42, 700-727 (2014) · Zbl 1297.62093 · doi:10.1214/13-AOS1201
[16] Tang, J.; Li, Y.; Guan, Y., “Generalized Quasi-Likelihood Ratio Tests for Semiparametric Analysis of Covariance Models in Longitudinal Data, Journal of the American Statistical Association, 111, 736-747 (2016) · doi:10.1080/01621459.2015.1036995
[17] Wahba, G. (1990), Spline Models for Observational Data, Philadelphia, PA: SIAM. · Zbl 0813.62001
[18] Wang, H.; Ranalli, M. G., “Low-Rank Smoothing Splines on Complicated Domains, Biometrics, 63, 209-217 (2007) · Zbl 1122.62098 · doi:10.1111/j.1541-0420.2006.00674.x
[19] Wang, L.; Cao, G., “Efficient Estimation for Generalized Partially Linear Single-Index Models, Bernoulli, 24, 1101-1127 (2018) · Zbl 1419.62067 · doi:10.3150/16-BEJ873
[20] Wang, L.; Liu, X.; Liang, H.; Carroll, R., “Estimation and Variable Selection for Generalized Additive Partial Linear Models, The Annals of Statistics, 39, 1827-1851 (2011) · Zbl 1227.62053 · doi:10.1214/11-AOS885
[21] Wang, L.; Wang, G.; Lai, M. J.; Gao, L., “Efficient Estimation of Partially Linear Models for Data on Complicated Domains by Bivariate Penalized Splines Over Triangulations, Statistica Sinica, 30, 347-369 (2020) · Zbl 1444.62054 · doi:10.5705/ss.202017.0243
[22] Wang, L.; Yang, L., “Spline-Backfitted Kernel Smoothing of Nonlinear Additive Autoregression Model, The Annals of Statistics, 35, 2474-2503 (2007) · Zbl 1129.62038 · doi:10.1214/009053607000000488
[23] Wilhelm, M.; Sangalli, L. M., “Generalized Spatial Regression With Differential Regularization, Journal of Statistical Computation and Simulation, 86, 2497-2518 (2016) · Zbl 1510.62237 · doi:10.1080/00949655.2016.1182532
[24] Wood, S. N., “Thin Plate Regression Splines, Journal of the Royal Statistical Society, Series B, 65, 95-114 (2003) · Zbl 1063.62059 · doi:10.1111/1467-9868.00374
[25] Wood, S. N.; Bravington, M. V.; Hedley, S. L., “Soap Film Smoothing, Journal of the Royal Statistical Society, Series B, 70, 931-955 (2008) · Zbl 1411.65021 · doi:10.1111/j.1467-9868.2008.00665.x
[26] Wood, S. N.; Goude, Y.; Shaw, S., “Generalized Additive Models for Large Data Sets, Journal of the Royal Statistical Society, Series C, 64, 139-155 (2015) · doi:10.1111/rssc.12068
[27] Yang, L.; Park, B. U.; Xue, L.; Härdle, W., “Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration, Journal of the American Statistical Association, 101, 1212-1227 (2006) · Zbl 1120.62317 · doi:10.1198/016214506000000429
[28] Zheng, S.; Liu, R.; Yang, L.; Härdle, W. K., “Statistical Inference for Generalized Additive Models: Simultaneous Confidence Corridors and Variable Selection, Test, 25, 607-626 (2016) · Zbl 1422.62155 · doi:10.1007/s11749-016-0480-8
[29] Zhou, L.; Pan, H., “Smoothing Noisy Data for Irregular Regions Using Penalized Bivariate Splines on Triangulations, Computational Statistics, 29, 263-281 (2014) · Zbl 1306.65159 · doi:10.1007/s00180-013-0448-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.