×

Conditional independence in max-linear Bayesian networks. (English) Zbl 07493815

Summary: Motivated by extreme value theory, max-linear Bayesian networks have been recently introduced and studied as an alternative to linear structural equation models. However, for max-linear systems the classical independence results for Bayesian networks are far from exhausting valid conditional independence statements. We use tropical linear algebra to derive a compact representation of the conditional distribution given a partial observation, and exploit this to obtain a complete description of all conditional independence relations. In the context-specific case, where conditional independence is queried relative to a specific value of the conditioning variables, we introduce the notion of a source DAG to disclose the valid conditional independence relations. In the context-free case, we characterize conditional independence through a modified separation concept, \(\ast\)-separation, combined with a tropical eigenvalue condition. We also introduce the notion of an impact graph, which describes how extreme events spread deterministically through the network and we give a complete characterization of such impact graphs. Our analysis opens up several interesting questions concerning conditional independence and tropical geometry.

MSC:

62H22 Probabilistic graphical models
60G70 Extreme value theory; extremal stochastic processes
14T90 Applications of tropical geometry
62R01 Algebraic statistics

References:

[1] ALLAMIGEON, X., FAHRENBERG, U., GAUBERT, S., KATZ, R. D. and LEGAY, A. (2014). Tropical Fourier-Motzkin elimination, with an application to real-time verification. Internat. J. Algebra Comput. 24 569-607. · Zbl 1301.90069 · doi:10.1142/S0218196714500258
[2] ALLAMIGEON, X., GAUBERT, S. and GOUBAULT, É. (2013). Computing the vertices of tropical polyhedra using directed hypergraphs. Discrete Comput. Geom. 49 247-279. · Zbl 1312.52001 · doi:10.1007/s00454-012-9469-6
[3] ALLAMIGEON, X., GAUBERT, S. and KATZ, R. D. (2011). Tropical polar cones, hypergraph transversals, and mean payoff games. Linear Algebra Appl. 435 1549-1574. · Zbl 1217.14047 · doi:10.1016/j.laa.2011.02.004
[4] ALLAMIGEON, X. and KATZ, R. D. (2013). Minimal external representations of tropical polyhedra. J. Combin. Theory Ser. A 120 907-940. · Zbl 1312.52002 · doi:10.1016/j.jcta.2013.01.011
[5] BACCELLI, F. L., COHEN, G., OLSDER, G. J. and QUADRAT, J.-P. (1992). Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, Chichester. · Zbl 0824.93003
[6] BOEGE, T., D’ALÌ, A., KAHLE, T. and STURMFELS, B. (2019). The geometry of gaussoids. Found. Comput. Math. 19 775-812. · Zbl 1453.13076 · doi:10.1007/s10208-018-9396-x
[7] BUCK, J. and KLÜPPELBERG, C. (2020). Recursive max-linear models with propagating noise. Available at arXiv:2003.00362. · Zbl 1471.62353
[8] BUTKOVIČ, P. (2010). Max-Linear Systems: Theory and Algorithms. Springer Monographs in Mathematics. Springer, London. · Zbl 1202.15032 · doi:10.1007/978-1-84996-299-5
[9] COOLEY, D., DAVIS, R. A. and NAVEAU, P. (2012). Approximating the conditional density given large observed values via a multivariate extremes framework, with application to environmental data. Ann. Appl. Stat. 6 1406-1429. · Zbl 1257.62118 · doi:10.1214/12-AOAS554
[10] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer Series in Operations Research and Financial Engineering. Springer, New York. · Zbl 1101.62002 · doi:10.1007/0-387-34471-3
[11] Engelke, S. and Hitz, A. S. (2020). Graphical models for extremes. J. R. Stat. Soc. Ser. B. Stat. Methodol. 82 871-932. · Zbl 07554779
[12] FRYDENBERG, M. (1990). The chain graph Markov property. Scand. J. Stat. 17 333-353. · Zbl 0713.60013
[13] GEIGER, D., VERMA, T. S. and PEARL, J. (1990). Identifying independence in Bayesian networks. Networks 20 507-534. · Zbl 0724.05066
[14] GISSIBL, N. (2018). Graphical Modeling of Extremes: Max-linear models on directed acyclic graphs Ph.D. thesis, Technical University of Munich. · Zbl 1419.62138
[15] Gissibl, N. and Klüppelberg, C. (2018). Max-linear models on directed acyclic graphs. Bernoulli 24 2693-2720. · Zbl 1419.62138 · doi:10.3150/17-BEJ941
[16] GISSIBL, N., KLÜPPELBERG, C. and LAURITZEN, S. L. (2021). Estimation, identifiability, and structure learning of recursive max-linear models. Scand. J. Stat. 48 188-211. · Zbl 1467.62105 · doi:10.1111/sjos.12446
[17] GISSIBL, N., KLÜPPELBERG, C. and OTTO, M. (2018). Tail dependence of recursive max-linear models with regularly varying noise variables. Econom. Stat. 6 149-167. · doi:10.1016/j.ecosta.2018.02.003
[18] JOSWIG, M. (2020). Essentials of Tropical Combinatorics. Springer, Heidelberg.
[19] KIIVERI, H., SPEED, T. P. and CARLIN, J. B. (1984). Recursive causal models. J. Austral. Math. Soc. Ser. A 36 30-52. · Zbl 0551.62021
[20] KLÜPPELBERG, C. and KRALI, M. (2021). Estimating an extreme Bayesian network via scalings. J. Multivariate Anal. 181 104672. · Zbl 1461.62083 · doi:10.1016/j.jmva.2020.104672
[21] KLÜPPELBERG, C. and LAURITZEN, S. (2019). Bayesian networks for max-linear models. In Network Science—an Aerial View (F. Biagini, G. Kauermann and T. Meyer-Brandis, eds.) 79-97. Springer Nature, Cham.
[22] Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA. · Zbl 1183.68483
[23] LAURITZEN, S. and SADEGHI, K. (2018). Unifying Markov properties for graphical models. Ann. Statist. 46 2251-2278. · Zbl 1408.62122 · doi:10.1214/17-AOS1618
[24] LAURITZEN, S. L. (1996). Graphical Models. Oxford Statistical Science Series 17. The Clarendon Press, Oxford. · Zbl 0907.62001
[25] LAURITZEN, S. L., DAWID, A. P., LARSEN, B. N. and LEIMER, H-G. (1990). Independence properties of directed Markov fields. Networks 20 491-505. · Zbl 0743.05065
[26] MACLAGAN, D. and STURMFELS, B. (2015). Introduction to Tropical Geometry. Graduate Studies in Mathematics 161. Amer. Math. Soc., Providence, RI. · doi:10.1090/gsm/161
[27] Studený, M. (2005). Probabilistic Conditional Independence Structures. Information Science and Statistics. Springer, London. · Zbl 1070.62001
[28] VERMA, T. and PEARL, J. (1990). Equivalence and synthesis of causal models. In Proceedings of the 6th Conference on Uncertainty in Artifical Intelligence 220-227. MIT Press, Cambridge, MA.
[29] WANG, Y. and STOEV, S. A. (2011). Conditional sampling for spectrally discrete max-stable random fields. Adv. in Appl. Probab. 43 461-483. · Zbl 1225.60085 · doi:10.1239/aap/1308662488
[30] Wright, S. (1921). Correlation and causation. J. Agric. Res. 20 557-585.
[31] WRIGHT, S. (1934). The method of path coefficients. Ann. Math. Stat. 5 161-215 · Zbl 0010.31305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.