×

Estimating the reach of a manifold via its convexity defect function. (English) Zbl 07493729

Summary: The reach of a submanifold is a crucial regularity parameter for manifold learning and geometric inference from point clouds. This paper relates the reach of a submanifold to its convexity defect function. Using the stability properties of convexity defect functions, along with some new bounds and the recent submanifold estimator of Aamari and Levrard (Ann. Statist. 47(1), 177-204 (2019)), an estimator for the reach is given. A uniform expected loss bound over a \({\mathscr{C}}^k\) model is found. Lower bounds for the minimax rate for estimating the reach over these models are also provided. The estimator almost achieves these rates in the \(\mathscr{C}^3\) and \(\mathscr{C}^4\) cases, with a gap given by a logarithmic factor.

MSC:

62C20 Minimax procedures in statistical decision theory
62G05 Nonparametric estimation
53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces
53C40 Global submanifolds

Software:

bootstrap

References:

[1] Aamari, E.; Kim, J.; Chazal, F.; Michel, B.; Rinaldo, A.; Wasserman, L., Estimating the reach of a manifold, Electron. J. Stat., 13, 1, 1359-1399 (2019) · Zbl 1418.62100 · doi:10.1214/19-EJS1551
[2] Aamari, E.; Levrard, C., Stability and minimax optimality of tangential Delaunay complexes for manifold reconstruction, Discrete Comput. Geom., 59, 4, 923-971 (2018) · Zbl 1408.62103 · doi:10.1007/s00454-017-9962-z
[3] Aamari, E.; Levrard, C., Nonasymptotic rates for manifold, tangent space and curvature estimation, Ann. Stat., 47, 1, 177-204 (2019) · Zbl 1419.62130 · doi:10.1214/18-AOS1685
[4] Almgren, F., Optimal isoperimetric inequalities, Indiana Univ. Math. J., 35, 3, 451-547 (1986) · Zbl 0585.49030 · doi:10.1512/iumj.1986.35.35028
[5] Attali, D.; Lieutier, A., Geometry-driven collapses for converting a Čech complex into a triangulation of a nicely triangulable shape, Discrete Comput. Geom., 54, 4, 798-825 (2015) · Zbl 1336.68258 · doi:10.1007/s00454-015-9733-7
[6] Attali, D.; Lieutier, A.; Salinas, D., Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes, Comput. Geom., 46, 4, 448-465 (2013) · Zbl 1262.68171 · doi:10.1016/j.comgeo.2012.02.009
[7] Balakrishnan, S., Rinaldo, A., Sheehy, D., Singh, A., Wasserman, L.: Minimax rates for homology inference. In: 15th International Conference on Artificial Intelligence and Statistics (Los Cancajos 2012). Proceedings of Machine Learning Research, vol. 22, pp. 64-72 (2012)
[8] Boissonnat, J-D; Lieutier, A.; Wintraecken, M., The reach, metric distortion, geodesic convexity and the variation of tangent spaces, J. Appl. Comput. Topol., 3, 1-2, 29-58 (2019) · Zbl 1431.53043 · doi:10.1007/s41468-019-00029-8
[9] do Carmo, MP, Riemannian Geometry. Mathematics: Theory & Applications (1992), Boston: Birkhäuser, Boston · Zbl 0752.53001 · doi:10.1007/978-1-4757-2201-7
[10] Divol, V.: Minimax adaptive estimation in manifold inference (2020). arXiv:2001.04896 · Zbl 1493.62162
[11] Efron, B.; Tibshirani, RJ, An introduction to the bootstrap, Monographs on Statistics and Applied Probability (1993), New York: Chapman and Hall, New York · Zbl 0835.62038
[12] Federer, H., Curvature measures, Trans. Am. Math. Soc., 93, 3, 418-491 (1959) · Zbl 0089.38402 · doi:10.1090/S0002-9947-1959-0110078-1
[13] Genovese, CR; Perone-Pacifico, M.; Verdinelli, I.; Wasserman, L., Minimax manifold estimation, J. Mach. Learn. Res., 13, 1263-1291 (2012) · Zbl 1283.62112
[14] Grove, K.: Critical point theory for distance functions. In: Differential Geometry: Riemannian Geometry (Los Angeles 1990). Proceedings of Symposia on Pure Mathematics, vol. 54, part 3, pp. 357-385. American Mathematical Society, Providence (1993) · Zbl 0806.53043
[15] Kim, J.; Rinaldo, A.; Wasserman, L., Minimax rates for estimating the dimension of a manifold, J. Comput. Geom., 10, 1, 42-95 (2019) · Zbl 1417.68141
[16] Lytchak, A., On the geometry of subsets of positive reach, Manuscr. Math., 115, 2, 199-205 (2004) · Zbl 1076.53043 · doi:10.1007/s00229-004-0491-8
[17] Niyogi, P.; Smale, S.; Weinberger, S., Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39, 1-3, 419-441 (2008) · Zbl 1148.68048 · doi:10.1007/s00454-008-9053-2
[18] Yu, B., Assouad, Fano, and Le Cam, Festschrift for Lucien Le Cam, 423-435 (1997), New York: Springer, New York · Zbl 0896.62032 · doi:10.1007/978-1-4612-1880-7_29
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.