×

Noise and noise propagation in transition cascade of colonic cells with four coupled feedback regulations. (English) Zbl 07482564

Summary: Noise and noise propagation are vital in various biological processes. In a phenotypic transition cascade of colonic cells, there are three compartments: stem cells (SCs), transit-amplifying cells (TACs), and fully differentiated cells (FDCs). Instead of pure linear feedback (L) or pure saturation feedback (S) in regulating SCs and TACs differentiation, four coupled feedbacks including LL, LS, SL, and SS are considered to compare the impacts of different feedbacks on noise and noise propagation of cells. Rather than LL feedback and LS feedback, SL feedback and SS feedback have obvious advantages: Firstly, the characteristics of cells steady states changing with the parameter are more consistent with the tumor development. Secondly, as long as the key parameter is adjusted reasonably, the strong correlation between any two fluctuations of cells can be effectively utilized or avoided. Finally, although there is no direct interaction between SCs and FDCs, the noise in SCs can propagate to FDCs by TACs. And the transmitted noise from upstream cells can cause the large total noise of downstream cells even the number of downstream cells is large. The strong correlation and noise propagation between upstream and downstream cells may be the theoretical basis of the targeted therapy, which can achieve dual or even triple-drug targeted anti-tumor therapy by acting on different targets in the upstream or downstream pathways. Therefore, SL feedback or SS feedback may be a better choice for SCs and TACs to adjust their differentiation rather than LL feedback and LS feedback. This work is an extension and application of the elementary fluctuation theory of statistical physics in life system.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Yates Eugene, F.; Iberall, A. S., Ann. Biomed. Eng., 1, 381 (1973)
[2] Dong, P.; Liu, Z., Open Biol., 7, Article 170030 pp. (2017)
[3] Hou, X. F.; Zhou, B. Q.; Zhou, Y. F.; Apata, C. O.; Jiang, L.; Pei, Q. M., Phys. Rev. E, 102, Article 062411 pp. (2020)
[4] Gui, R.; Liu, Q.; Yao, Y.; Deng, H.; Ma, C.; Jia, Y.; Yi, M., Front. Physiol., 7, 600 (2016)
[5] Tsimring, L. S., Rep. Progr. Phys., 77, Article 026601 pp. (2014)
[6] Engl, C., Biochem. Soc. Trans., 47, 209 (2018)
[7] Wang, Z.; Zhang, J., Proc. Natl. Acad. Sci. USA, 108, E67 (2011)
[8] Gui, R.; Li, Z. H.; Hu, L. J.; Cheng, G. H.; Liu, Q.; Xiong, J.; Jia, Y.; Yi, M., Chin. Phys. B, 27, Article 028706 pp. (2018)
[9] Raj, A.; van Oudenaarden, A., Cell, 135, 216 (2008)
[10] Eldar, A.; Elowitz, M. B., Nature, 467, 167 (2010)
[11] Assaf, M.; Roberts, E.; Luthey-Schulten, Z.; Goldenfeld, N., Phys. Rev. Lett., 111, Article 058102 pp. (2013)
[12] Kohar, V.; Lu, M., NPJ Syst. Biol. Appl., 4, 40 (2018)
[13] Baudrimont, A.; Jaquet, V.; Wallerich, S.; Voegeli, S.; Becskei, A., Cell Rep., 26, 3752 (2019)
[14] Karmakar, R., Internat. J. Modern Phys. C, 30, Article 1950014 pp. (2019)
[15] Assaf, M.; Roberts, E.; Luthey-Schulten, Z., Phys. Rev. Lett., 106, Article 248102 pp. (2011)
[16] Roberts, E.; Magis, A.; Ortiz, J. O.; Baumeister, W.; Luthey-Schulten, Z., PLoS Comput. Biol., 7, Article e1002010 pp. (2011)
[17] Maamar, H.; Raj, A.; Dubnau, D., Science, 317, 526 (2007)
[18] Levine, E.; Hwa, T., Proc. Natl. Acad. Sci. USA, 104, 9224 (2007) · Zbl 1156.92019
[19] Hu, B.; Kessler, D. A.; Rappel, W. J.; Levine, H., Phys. Rev. Lett., 107, Article 148101 pp. (2011)
[20] Lei, X.; Tian, W.; Zhu, H.; Chen, T.; Ao, P., Sci. Rep., 5, 13597 (2015)
[21] Zhang, Y.; Zhou, P.; Yao, Z.; Ma, J., Pramana J. Phys., 95, 49 (2021)
[22] Ma, J.; Xu, W.; Zhou, P.; Zhang, G., Physica A, 536, Article 122598 pp. (2019) · Zbl 07571522
[23] Liu, Y.; Xu, Y.; Ma, J., Commun. Nonlinear Sci. Numer. Simul., 89, Article 105297 pp. (2020) · Zbl 1456.34049
[24] Wu, F.; Ma, J.; Ren, G., J. Zhejiang Univ. Sci. A, 19, 889 (2018)
[25] Ge, M.; Lu, L.; Xu, Y.; Mamatimin, R.; Pei, Q.; Jia, Y., Chaos Solitons Fractals, 133, Article 109645 pp. (2020) · Zbl 1483.92037
[26] Liu, Y.; Ma, J.; Xu, Y.; Jia, Y., Int. J. Bifurcation Chaos, 29, Article 1950156 pp. (2019) · Zbl 1442.92021
[27] Xu, Y.; Jia, Y.; Wang, H.; Liu, Y.; Wang, P.; Zhao, Y., Nonlinear Dynam., 95, 3237 (2019) · Zbl 1437.92009
[28] Cheng, G.; Gui, R.; Yao, Y.; Yi, M., Physica A, 520, 361 (2019) · Zbl 1514.92006
[29] Pedraza, J. M.; van Oudenaarden, A., Science, 307, 1965 (2005)
[30] Kleijn, I. T.; Krah, L. H.J.; Hermsen, R., PLoS Comput. Biol., 14, Article e1006386 pp. (2018)
[31] Baraskar, A. A.; Deb, A.; Viswanathan, G. A., IFAC Proc., 46, 89 (2013)
[32] Shibata, T.; Fujimoto, K., Proc. Natl. Acad. Sci. USA, 102, 331 (2005)
[33] Dhananjaneyulu, V.; V. N. Sagar, P.; Kumar, G.; Viswanathan, G. A., PLoS One, 7, Article e35958 pp. (2012)
[34] Viswanathan, G.; Jayaprakash, C.; Sealfon, S. C.; Hayot, F., Phys. Biol., 5, Article 046002 pp. (2008)
[35] Pei, Q. M.; Zhan, X.; Yang, L. J.; Shen, J.; Wang, L. F.; Qiu, K.; Liu, T.; Kirunda, J. B.; Yousif, A. A.M.; Li, A. B.; Jia, Y., Phys. Rev. E, 92, Article 012721 pp. (2015)
[36] Wang, L. F.; Xu, Y.; Ma, J.; Jia, Y., Commun. Theor. Phys., 70, 485 (2018)
[37] Kobayashi, T. J.; Yokota, R.; Aihara, K., J. Stat. Phys., 162, 1425 (2016) · Zbl 1337.92075
[38] Liu, C.; Wang, J.; Yu, H.; Deng, B.; Tsang, K. M.; Chan, W. L.; Wong, Y. K., Commun. Nonlinear Sci. Numer. Simul., 19, 1088 (2014) · Zbl 1457.62352
[39] Holehouse, J.; Cao, Z.; Grima, R., Biophys. J., 118, 1517 (2020)
[40] Gomeza, D.; Marathe, R.; Bierbaum, V.; Klumpp, S., J. Theoret. Biol., 348, 1 (2014) · Zbl 1412.92089
[41] Zhang, J.; Yuan, Z.; Zhou, T., Phys. Biol., 6, Article 046009 pp. (2009)
[42] Borri, A.; Palumbo, P.; Singh, A., IET Syst. Biol., 10, 179 (2016)
[43] Hinczewski, M.; Thirumalai, D., J. Phys. Chem. B, 120, 6166 (2016)
[44] Kim, K. H.; Qian, H.; Sauro, H. M., J. Chem. Phys., 139, Article 144108 pp. (2013)
[45] Wang, P.; Zhang, Y.; Lü, J.; Yu, X., Nonlinear Dynam., 79, 397 (2015)
[46] Hornung, G.; Barkai, N., PLoS Comput. Biol., 4, Article e8 pp. (2008)
[47] Paulsson, J., Nature, 427, 415 (2004)
[48] Czuppon, P.; Pfaffelhuber, P., J. Math. Biol., 77, 1153 (2018) · Zbl 1398.92068
[49] Jia, C.; Xie, P.; Chen, M.; Zhang, M. Q., Sci. Rep., 7, 16037 (2017)
[50] Hansen, M. M.K.; Wen, W. Y.; Ingerman, E.; Razooky, B. S.; Thompson, C. E.; Dar, R. D.; Chin, C. W.; Simpson, M. L.; Weinberger, L. S., Cell, 173, 1609 (2018)
[51] Bokes, P.; Singh, A., J. Math. Biol., 74, 1483 (2017) · Zbl 1366.92036
[52] Denbya, C. M.; Im, J. H.; Yu, R. C.; Pesce, C. G.; Brem, R. B., Proc. Natl. Acad. Sci. USA, 109, 3874 (2012)
[53] T. Steiner, L. Schramm, Y. Jin, B. Sendhoff, in: IEEE Congress on Evolutionary Computation (CEC-IEEE 2007) (IEEE 2007).
[54] Hooshangi, S.; Weiss, R., Chaos, 16, Article 026108 pp. (2006) · Zbl 1152.92338
[55] Karmakar, R., Internat. J. Modern Phys. C, 27, Article 1650056 pp. (2016)
[56] Zheng, L.; Chen, M.; Nie, Q., J. Math. Phys., 53, Article 115616 pp. (2012) · Zbl 1279.92011
[57] Zhang, H.; Chen, Y.; Chen, Y., PLoS One, 7, Article e51840 pp. (2012)
[58] Kim, D.; Kwon, Y. K.; Cho, K. H., BioEssays, 29, 85 (2007)
[59] Freeman, M., Nature, 408, 313 (2000)
[60] Tiwari, A.; Igoshin, O. A., Phys. Biol., 9, Article 055003 pp. (2012)
[61] Tian, X. J.; Zhang, X. P.; Liu, F.; Wang, W., Phys. Rev. E, 80, Article 011926 pp. (2009)
[62] Wang, L. S.; Li, N. X.; Chen, J. J.; Zhang, X. P.; Liu, F.; Wang, W., Phys. Rev. E, 97, Article 042412 pp. (2018)
[63] Jia, C.; Wang, L. Y.; Yin, G. G.; Zhang, M. Q., Phys. Rev. E, 100, Article 052406 pp. (2019)
[64] Johnston, M. D.; Edwards, C. M.; Bodmer, W. F.; Maini, P. K.; Chapman, S. J., Proc. Natl. Acad. Sci. USA, 104, 4008 (2007)
[65] Pei, Q. M.; Zhan, X.; Yang, L. J.; Bao, C.; Cao, W.; Li, A. B.; Rozi, A.; Jia, Y., Phys. Rev. E, 89, Article 032715 pp. (2014)
[66] Brett, T.; Galla, T., Phys. Rev. Lett., 110, Article 250601 pp. (2013)
[67] van Kampen, N. G., Stochastic Processes in Physics and Chemistry (1997), Elsevier: Elsevier Amsterdam · Zbl 0974.60020
[68] Sriyudthsak, K.; Uno, H.; Gunawan, R.; Shiraishi, F., Math. Biosci., 269, 153 (2015) · Zbl 1351.92019
[69] Gillespie, D. T., J. Phys. Chem., 81, 2340 (1977)
[70] Oyarzún, D. A.; Lugagne, J. B.; Stan, G. B.V., ACS Synth. Biol., 4, 116 (2015)
[71] Qiu, K.; Wang, L.; Shen, J.; Yousif, A. A.M.; He, P.; Shao, D.; Zhang, X.; Kirunda, J. B.; Jia, Y., Sci. Rep., 6, 36620 (2016)
[72] Shibata, T.; Fujimoto, K., Proc. Natl. Acad. Sci. USA, 102, 331 (2005)
[73] Norat, T.; Bingham, S.; Ferrari, P., J. Natal. Cancer Inst., 97, 906 (2005)
[74] Park, S. Y.; Murphy, S. P.; Wilkens, L. R.; Nomura, A. M.; Henderson, B. E.; Kolonel, L. N., Am. J. Epidemiol., 165, 784 (2007)
[75] Chen, G., J. Multidiscip. Cancer Manage., 6, 80 (2020)
[76] Zhang, B.; Fang, C.; Deng, D.; Xia, L., Oncol. Lett., 16, 27 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.