×

A response matrix method for slab-geometry discrete ordinates adjoint calculations in energy-dependent neutral particle transport. (English) Zbl 07476660

Summary: Presented here is an application of the Response Matrix (RM\(^†)\) method for adjoint discrete ordinates \((S_N)\) problems in slab-geometry applied to energy-dependent neutral particle transport problems. The RM\(^†\) method is free from spatial truncation errors, as it generates numerical results for the adjoint angular fluxes in multilayer slabs that agree with the numerical values obtained from the analytical solution of the energy multigroup adjoint \(S_N\) equations. The main contribution of this work is to analyze the application of the RM\(^†\) method to problems where it is required to solve the energy multigroup adjoint \(S_N\) equations multiple times. This is the case of two classes of problems that can be taken care of through the adjoint technique: (i) source-detector problems; and (ii) the estimation of interior neutron source distributions that drive a subcritical system at a prescribed power density level. The efficiency (speed and accuracy) of the RM\(^†\) code is compared to the conventional Diamond Difference code.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Ahnesjo, A.; Aspradakis, M. M., Dose calculations for external photon beams in radiotherapy, Phys. Med. Biol., 44, 11, R99-155 (1999)
[2] Barichello, L. B.; Siewert, C. E., A discrete ordinates solution for a non-grey model with complete frequency redistribution, J. Quant. Spectrosc. Radiat. Transf., 62, 6, 665-75 (1999) · doi:10.1016/S0022-4073(98)00096-X
[3] Barichello, L. B.; Garcia, R. D. M.; Siewert, C. E., A spherical harmonicssolution for radiative-transfer problems with reecting boundaries andinternal sources, J. Quant. Spectrosc. Radiat. Transf., 60, 2, 247-60 (1998) · doi:10.1016/S0022-4073(97)00176-3
[4] Barros, R. C.; Larsen, E. W., A numerical method for one-group slab-geometry discrete ordinates problems with no spatial truncation error, Nucl. Sci. Eng., 104, 3, 199-208 (1990) · doi:10.13182/NSE90-A23719
[5] Batistela, C. H. F.; Vilhena, M. T. d.; Borges, V., Criticality by the LTSn method, J. Nucl. Sci. Technol., 34, 6, 603-6 (1997) · doi:10.1080/18811248.1997.9733714
[6] Bell, G. I.; Glasstone, S., Nuclear reactor theory (1970), New York: Van Nostrand Reinhold, New York
[7] Bellout, M. C.; Ciaurri, D. E.; Durlofsky, L. J.; Foss, B.; Kleppe, J., Joint optimization of oil well placement and controls, Comput. Geosci., 16, 4, 1061-79 (2012) · doi:10.1007/s10596-012-9303-5
[8] Benassi, M.; Cotta, R. M.; Siewert, C. E., The PN method for radiativetransfer problems with reective boundary conditions, J. Quant. Spectrosc. Radiat. Transf., 30, 6, 547-53 (1983) · doi:10.1016/0022-4073(83)90010-9
[9] Case, K. M.; Zweifel, P. F., Linear transport theory (1967), Boston, MA: Addison-Wesley Publishing, Boston, MA · Zbl 0162.58903
[10] Curbelo, J. P.; da Silva, O. P.; Barros, R. C., An adjoint technique applied to slab-geometry source-detector problems using the generalized spectral Green’s function nodal method, J. Comput. Theor. Transp., 47, 1-3, 278-99 (2018) · Zbl 07472828 · doi:10.1080/23324309.2018.1539403
[11] Curbelo, J. P.; da Silva, O. P.; García, C. R.; Barros, R. C.; Constanda, C.; Dalla Riva, M.; Lamberti, P. D.; Musolino, P., Integral methods in science and engineering, Vol. 2: Practical applications, Shifting strategy in the spectral analysis for the spectral Green’s function nodal method for slab-geometry adjoint transport problems in the discrete ordinates formulation (2017), Birkhauser Basel · Zbl 1404.65068
[12] Da Silva, O. P.; Guida, M. R.; Alves Filho, H.; Barros, R. C., A response matrix spectral nodal method for energy multigroup X,Y-geometry discrete ordinates problems in non-multiplying media, Prog. Nucl. Energy, 125, 103288 (2020) · doi:10.1016/j.pnucene.2020.103288
[13] Domínguez, D. S.; Barros, R. C., The Spectral Green’s Function linear-nodal method for one-speed X, Y-geometry discrete ordinates deep penetration problems, Ann. Nucl. Energy, 34, 12, 958-66 (2007) · doi:10.1016/j.anucene.2007.04.015
[14] Gandini, A., A generalized perturbation method for bilinear functionals of the real and adjoint neutron fluxes, Nucl. Energy, 21, 10, 755-65 (1967) · doi:10.1016/0022-3107(67)90086-X
[15] Gandini, A., Generalised perturbation theory (GPT). A heuristic approach, 19 (1987), New York: Plenum Press, New York
[16] Garcia, R. D. M.; Siewert, C. E., Multislab multigroup transport theory with \(####\) th order anisotropic scattering, Comput. Phys., 50, 181-92 (1983) · Zbl 0503.65085
[17] Haghighat, A.; Wagner, J. C., Monte Carlo variance reduction with deterministic importance functions, Prog. Nucl. Energy, 42, 1, 25-53 (2003) · doi:10.1016/S0149-1970(02)00002-1
[18] Hayashi, T.; Tobita, K.; Nakamori, Y.; Orimo, S., Advanced neutron shielding material using zirconium borohydride and zirconium hydride, J. Nucl. Mater., 386-388, 30, 119-21 (2009) · doi:10.1016/j.jnucmat.2008.12.073
[19] Kent, A. G.; John, L. H.; Todd, A. W.; Gregory, F.; Firas, M., Comparison of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations, Phys. Med. Biol., 51, 2253-65 (2006)
[20] Kim, A. D., Transport theory for light propagation in biological tissue, J. Opt. Soc. Am. A., 21, 5, 820-7 (2004) · doi:10.1364/JOSAA.21.000820
[21] Korobeynikov, A.; Ginkin, V., Computing analysis and optimization of neutron beam for tumor therapy, Transp. Theory Stat. Phys., 37, 5-7, 601-12 (2008) · Zbl 1156.82422 · doi:10.1080/00411450802523464
[22] Leppanen, J., Response matrix method-based importance solver and variance reduction scheme in the Serpent 2 Monte Carlo code, Nucl. Technol., 205, 11, 1-17 (2019)
[23] Lewins, J., Importance: The adjoint function (1965), Oxford, UK: Pergamon, Oxford, UK
[24] Lewis, E. E.; Miller, W. F., Computational methods of neutron transport (1993), La Grange Park, IL: American Nuclear Society, La Grange Park, IL · Zbl 0594.65096
[25] Mansur, R. S.; Moura, C. A.; Barros, R. C., 55-6 (2015)
[26] Menezes, W. A.; Alves Filho, H.; Barros, R., Spectral Green’s function nodal method for multigroup SN problems with anisotropic scattering in slab-geometry non-multiplying media, Ann. Nucl. Energy, 64, 270-5 (2014) · doi:10.1016/j.anucene.2013.09.023
[27] Menezes, W. A.; Alves Filho, H.; Barros, R. C., An analytical nodal method for energy multi-group discrete ordinates transport calculations in two-dimensional rectangular geometry, IJNEST, 12, 1, 66 (2018) · doi:10.1504/IJNEST.2018.10013863
[28] Moraes, L. R. C.; Alves Filho, H.; Barros, R. C., Calculation of neutron interior source distribution within subcritical fission-chain reacting systems for a prescribed power density generation (2017)
[29] Moraes, L. R. C.; Alves Filho, H.; Barros, R. C., Estimation of monoenergetic neutron source distribution for a prescribed power density generation in subcritical X,Y-geometry fission-chain reacting systems (2017)
[30] Moraes, L. R. C.; Alves Filho, H.; Barros, R. C., Estimation of neutron sources driving prescribed power generations in subcritical systems using one-speed two-dimensional discrete ordinates formulations, Ann. Nucl. Energy, 136, 107053 (2020) · doi:10.1016/j.anucene.2019.107053
[31] Nifenecker, N.; Meplan, O.; David, D., Accelerator driven subcritical reactors (2003), IOP Publishing
[32] Prinja, A. K.; Larsen, E. W., In The adjoint neutron transport equation, Ch. General principles of neutron transport, 485-99 (2010), Springer
[33] Prinja, A. K.; Larsen, E. W.; Cacuci, D. G., Handbook of nuclear engineering, General principles of neutron transport (2010), New York: Springer Science + Business Media, New York
[34] Royston, K.; Haghighat, A.; Walters, W.; Yi, C.; Sjoden, G. E., Determination of current at a detector window using a hybrid adjoint function methodology, Prog. Nuclear Sci. Technol., 4, 528-32 (2014) · doi:10.15669/pnst.4.528
[35] Silva, D. M.; Alves-Filho, H.; Barros, R. C., A hybrid spectral nodal method for multigroup X, Y-geometry discrete ordinates eigenvalue problems, Prog. Nucl. Energy, 95, 33-9 (2017) · doi:10.1016/j.pnucene.2016.11.003
[36] Silva, D. M.; Lydia, E. J.; Guida, M. R.; Zani, J. H.; Alves Filho, H.; Barros, R. C., Analytical methods for computacional modeling of fixed-source slab-geometry discrete ordinates transport problems: Response matrix and hybrid SN, Prog. Nucl. Energy, 69, 77-84 (2013) · doi:10.1016/j.pnucene.2013.02.007
[37] Silva, O. P., Um método de matriz resposta para cálculos de transporte multigrupos de energia na formulação das ordenadas discretas em meios não-multiplitcativos (2018), UERJ, Universidade do Estado do Rio de Janeiro: UERJ, Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ
[38] Vargas, R.; Vilhena, M. T., A closed-form solution for one-dimensional radiative condutive problem by the decomposition and LTSN methods, J. Quant. Spectrosc. Radiat. Transf., 61, 3, 303-8 (1999) · doi:10.1016/S0022-4073(97)00225-2
[39] Vasques, R.; Larsen, E. W., Anisotropic diffusion in model 2-D pebble-bed reactor cores (2009)
[40] Vasques, R.; Larsen, E. W., Non-classical particle transport with angular-dependent pathlength distributions. II: Application to pebble bed reactor cores, Ann. Nucl. Energy, 70, 301-11 (2014) · doi:10.1016/j.anucene.2013.12.020
[41] Vilhena, M. T.; Barichello, L., An analytical solution for the multigroup slab geometry discrete ordinates problems, Transp. Theory Stat. Phys., 24, 6, 1029-37 (1995)
[42] Zhang, D.; Rahnema, F., The adjoint coarse mesh transport (COMET) method and reciprocity relation of response coefficients, J. Comput. Theor. Transp., 45, 7, 578-93 (2016) · Zbl 07503237 · doi:10.1080/23324309.2016.1227850
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.