×

A note on automorphism groups of symmetric cubic graphs. (English) Zbl 07474441

Summary: We study \(s\)-arc-transitive cubic graph \(\Gamma\), and give a characterization of minimal normal subgroups of the automorphism group. In particular, each \(\Gamma\) with quasi-primitive automorphism group is characterized. An interesting consequence of this characterization states that a non-solvable minimal normal subgroup \(M\) contains at most 2 copies of non-abelian simple group when it acts transitively on arcs, or contains at most 6 copies of non-abelian simple group when it acts regularly on vertices.

MSC:

20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
Full Text: DOI

References:

[1] M. Conder, Trivalent (cubic) symmetric graphs on up to 10000 vertices, https://www.math.auckland.ac.nz/ conder/symmcubic10000list.txt. · Zbl 0996.05069
[2] Conder, M. and Dobcsanyi, P., Trivalent symmetric graphs up to 768 vertices,J. Combin. Math. Combin. Comput.40 (2002) 41-63. · Zbl 0996.05069
[3] Conder, M. and Lorimer, P. J., Automorphism groups of symmetric graphs of valency 3,J. Combin. Theory Ser. B47 (1989) 60-72. · Zbl 0682.05036
[4] Conder, M. and Nedela, R., A refined classification of symmetric cubic graphs,J. Algebra322 (2009) 722-740. · Zbl 1183.05034
[5] Conder, M., Zhou, J.-X., Feng, Y.-Q. and Zhang, M.-M., Edge-transitive bi-Cayley graphs,J. Combin. Theory Ser. B145 (2020) 264-306. · Zbl 1448.05098
[6] Djoković, D. Z., Automorphisms of graphs and coverings,J. Combin. Theory Ser. B16 (1974) 243-247. · Zbl 0277.05119
[7] Djoković, D. Z. and Miller, G. L., Regular groups of automorphisms of cubic graphs,J. Combin. Theory Ser. B29 (1980) 195-230. · Zbl 0385.05040
[8] Feng, Y.-Q. and Kwak, J. H., Cubic symmetric graphs of order twice an odd prime-power,J. Aust. Math. Soc.81 (2006) 153-164. · Zbl 1108.05050
[9] Gardiner, A. and Praeger, C., On 4-valent symmetric graphs,Europ. J. Combin.15 (1994) 375-381. · Zbl 0806.05037
[10] Koike, H. and Kovács, I., Arc-transitive cubic abelian bi-Cayley graphs and BCI-graphs, Filomat30(2) (2016) 321-331. · Zbl 1488.05237
[11] Liebeck, M. W., Praeger, C. E. and Saxl, J., On the O’Nan-Scott theorem for finite primitive permutation groups,J. Austral. Math. Soc. Ser. A44 (1988) 389-396. · Zbl 0647.20005
[12] Liebeck, M. W. and Saxl, J., The primitive permutation groups of odd degree,J. London Math. Soc. (2)31 (1985) 250-264. · Zbl 0573.20004
[13] Praeger, C. E., An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc-transitive graphs,J. Lond. Math. Soc.47(2) (1993) 227-239. · Zbl 0738.05046
[14] Tutte, W. T., On the symmetry of cubic graphs,Canad. J. Math.11 (1959) 621-624. · Zbl 0093.37701
[15] Zhou, J.-X. and Feng, Y.-Q., Cubic bi-Cayley graphs over abelian groups,Europ. J. Combin.36 (2014) 679-693. · Zbl 1284.05133
[16] Zhou, J.-X. and Feng, Y.-Q., The automorphisms of bi-Cayley graphs,J. Combin. Theory Ser. B116 (2016) 504-532. · Zbl 1327.05151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.