×

An eikonal equation approach to thermodynamics and the gradient flows in information geometry. (English) Zbl 07458616

Summary: We can incorporate a “time” evolution into thermodynamics as a Hamilton-Jacobi dynamics. A set of the equations of state in thermodynamics is considered as the generalized eikonal equation, which is equivalent to Hamilton-Jacobi equation. We relate the Hamilton-Jacobi dynamics of a simple thermodynamic system to the gradient flows in information geometry.

MSC:

82-XX Statistical mechanics, structure of matter

References:

[1] Rajeev, S. G., A Hamilton-Jacobi formalism for thermodynamics, Ann. Phys., 323, 2265-2285 (2008) · Zbl 1148.83014
[2] Vaz, C., A Lagrangian description of thermodynamics (2011), arXiv:1110.6152
[3] Baldiotti, M. C.; Fresneda, R.; Molina, C., A Hamiltonian approach to thermodynamics, Ann. Phys., 373, 245-256 (2016) · Zbl 1380.80002
[4] Amari, S. I., Information geometry and its applications, Appl. Math. Sci., 194 (2016) · Zbl 1350.94001
[5] Wada, T.; Matsuzoe, H.; Scarfone, A. M., Dualistic Hessian structures among the thermodynamic potentials in the \(\kappa \)-thermostatistics, Entropy, 17, 7213-7229 (2015) · Zbl 1338.80006
[6] Pistone, G., Lagrangian function on the finite state space statistical bundle, Entropy, 20, 139 (2018)
[7] Lods, B.; Pistone, G., Information geometry formalism for the spatially homogeneous Boltzmann equation, Entropy, 17, 4323-4363 (2015) · Zbl 1338.94044
[8] Pistone, G., Examples of the application of nonparametric information geometry to statistical physics, Entropy, 15, 4042-4065 (2013) · Zbl 1346.35144
[9] L. Malagò, G. Pistone, Natural gradient flow in the mixture geometry of a discrete exponential family entropy, 17 (2015) pp. 4215-4254. · Zbl 1338.94030
[10] Dirac, P. A.M., General Theory of Relativity (1996), Princeton University Press · Zbl 0844.53061
[11] Fujiwara, A., Dynamical systems on statistical models (State of art and perspectives of studies on nonlinear integrable systems), RIMS Kokyuroku, 822, 32-42 (1993)
[12] Fujiwara, A.; Amari, S. I., Gradient systems in view of information geometry, Physica D, 80, 317 (1995) · Zbl 0883.53020
[13] Nakamura, Y., Gradient systems associated with probability distributions Japan, J. Ind. Appl. Math., 11, 21-30 (1994) · Zbl 0811.58036
[14] Boumuki, N.; Noda, T., On gradient and hamiltonian flows on even dimensional dually flat spaces, Fundam. J. Math. Math. Sci., 6, 51-66 (2016)
[15] Hamilton, W. R., Theory of systems of rays, part first and part second (1827), Part first: Trans. Royal Irish Academy, 15 (1828), pp. 69-174. Part Second: manuscript, in: Sir William Rowan Hamilton mathematical Works, vol. I, chapter I, Cambridge University Press, London, 1931
[16] Houchmandzadeh, B., The Hamilton-Jacobi equation: an intuitive approach, Amer. J. Phys., 88, 353-359 (2020)
[17] Snow, D. R., Caratheodory-Hamilton-Jacobi theory in optimal control, J. Math. Anal. Appl., 17, 99-118 (1967) · Zbl 0149.05503
[18] Einstein, A., Riemann-geometrie mit aufrechterhaltung des begriffes des fernparallelismus, Phys.-Math., 217-221 (1928), English translation available in Jeffrey Yepez, Einstein’s vierbein field theory of curved space, URL: https://arxiv.org/abs/1106.2037 · JFM 54.0942.04
[19] Newman, E.; Penrose, R., An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys., 3, 566 (1962) · Zbl 0108.40905
[20] Blau, M., Lecture Notes on General Relativity (2012), Albert Einstein Center for Fundamental Physics, Bern University
[21] Wada, T., Some information geometric structures concerning Mercator projections, Physica A, 531, Article 121591 pp. (2019) · Zbl 07569413
[22] Crooks, G. E., Measuring thermodynamic length, Phys. Rev. Lett., 99, Article 100602 pp. (2007), and the references therein
[23] Ruppeiner, G., Riemannian geometry in thermodynamic fluctuation theory, Rev. Modern Phys., 67, 605-659 (1995)
[24] E.W. Weisstein, Scale Factor, From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/ScaleFactor.html.
[25] MLA Style: J.D. van der Waals - Nobel Lecture (2018), NobelPrize.org. Nobel Media AB, https://www.nobelprize.org/prizes/physics/1910/waals/lecture/ Mon. 10 Dec 2018
[26] Gompertz, B., On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philos. Trans. R. Soc. Lond., 115, 513-585 (1825)
[27] Ghosh, A.; Bhamidipati, C., Contact geometry and thermodynamics of black holes in AdS spacetimes, Phys. Rev. D, 100, Article 126020 pp. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.