×

Social percolation revisited: from 2d lattices to adaptive networks. (English) Zbl 07458589

Summary: The social percolation model Solomon et al. (2000) considers a 2-dimensional regular lattice. Each site is occupied by an agent with a preference \(x_i\) sampled from a uniform distribution \(U[0, 1]\). Agents transfer the information about the quality \(q\) of a movie to their neighbors only if \(x_i \leq q\). Information percolates through the lattice if \(q = q_c = 0.593\). – From a network perspective the percolating cluster can be seen as a random-regular network with \(n_c\) nodes and a mean degree that depends on \(q_c\). Preserving these quantities of the random-regular network, a true random network can be generated from the \(G(n, p)\) model after determining the link probability \(p\). I then demonstrate how this random network can be transformed into a threshold network, where agents create links dependent on their \(x_i\) values. Assuming a dynamics of the \(x_i\) and a mechanism of group formation, I further extend the model toward an adaptive social network model.

MSC:

82-XX Statistical mechanics, structure of matter

References:

[1] de Oliveira, S. M.; de Oliveira, P. M.C.; Stauffer, D., Evolution, Money, War, and Computers (1999), Vieweg+Teubner Verlag: Vieweg+Teubner Verlag Leipzig · Zbl 0919.92001
[2] Stauffer, D.; de Oliveira, S. M.; de Oliveira, P.; Martins, J. S., Biology, Sociology, Geology By Computational Physicists (2006), Elsevier: Elsevier Amsterdam · Zbl 1160.00315
[3] Solomon, S.; Weisbuch, G.; de Arcangelis, L.; Jan, N.; Stauffer, D., Social percolation models, Physica A, 277, 239-247 (2000)
[4] Weisbuch, G.; Stauffer, D., Hits and flops dynamics, Physica A, 287, 3-4, 563-576 (2000)
[5] Stauffer, D., Scaling theory of percolation clusters, Phys. Rep., 54, 1, 1-74 (1979)
[6] Lorenz, J.; Battiston, S.; Schweitzer, F., Systemic risk in a unifying framework for cascading processes on networks, Eur. Phys. J. B, 71, 4, 441-460 (2009) · Zbl 1188.91151
[7] Burkholz, R.; Schweitzer, F., A framework for cascade size calculations on random networks, Phys. Rev. E, 97, 4 (2018)
[8] Zhao, J.; Li, D.; Sanhedrai, H.; Cohen R., H. S., Spatio-temporal propagation of cascading overload failures in spatially embedded networks, Nature Commun., 7, 10094 (2016)
[9] Lee, K.-M.; Brummitt, C. D.; Goh, K.-I., Threshold cascades with response heterogeneity in multiplex networks, Phys. Rev. E, 90, 6, 62816 (2014)
[10] Gleeson, J. P., Mean size of avalanches on directed random networks with arbitrary degree distributions, Phys. Rev. E, 77, 5, 57101 (2008)
[11] Burkholz, R.; Schweitzer, F., Correlations between thresholds and degrees: An analytic approach to model attacks and failure cascades, Phys. Rev. E, 98, 2, Article 022306 pp. (2018)
[12] Gleeson, J. P.; Cahalane, D., Seed size strongly affects cascades on random networks, Phys. Rev. E, 75, 5, Article 056103 pp. (2007)
[13] Burkholz, R.; Herrmann, H.; Schweitzer, F., Explicit size distributions of failure cascades redefine systemic risk on finite networks, Sci. Rep., 8, 1, 6878 (2018)
[14] Tessone, C. J.; Garas, A.; Guerra, B.; Schweitzer, F., How Big Is Too Big? Critical shocks for systemic failure cascades, J. Stat. Phys., 151, 3, 765-783 (2013) · Zbl 1267.82156
[15] D. Garcia, P. Mavrodiev, F. Schweitzer, Social resilience in online communities: The autopsy of Friendster, in: 1st ACM Conference in Online Social Networks (COSN’13), 2013, pp. 39-50.
[16] Hegselmann, R.; Krause, U., Opinion dynamics and bounded confidence models, analysis, and simulation, J. Artif. Soc. Soc. Simul., 5, 3 (2002)
[17] Deffuant, G.; Neau, D.; Amblard, F.; Weisbuch, G., Mixing beliefs among interacting agents, Adv. Complex Syst., 3, 87-98 (2001)
[18] Schweitzer, F., The law of proportionate growth and its siblings: Applications in agent-based modeling of socio-economic systems, (Aoyama, H.; Aruka, Y.; Yoshikawa, H., Complexity, Heterogeneity, and the Methods of Statistical Physics in Economics (2020), Springer: Springer Tokyo), 145-176 · Zbl 1479.91211
[19] Bak, P.; Chen, K., Self-organized criticality, Sci. Am., 264, 1, 46-53 (1991)
[20] Schweighofer, S.; Schweitzer, F.; Garcia, D., A weighted balance model of opinion hyperpolarization, J. Artif. Soc. Soc. Simul., 23, 3, 5 (2020)
[21] Groeber, P.; Schweitzer, F.; Press, K., How groups can foster consensus: The case of local cultures, J. Aritifical Soc. Soc. Simul., 12, 2 (2009), 4 (1-22)
[22] Schweitzer, F., Sociophysics, Phys. Today, 71, 2, 40-46 (2018)
[23] Flache, A.; Mäs, M.; Feliciani, T.; Chattoe-Brown, E.; Deffuant, G.; Huet, S.; Lorenz, J., Models of social influence: Towards the next frontiers, J. Artif. Soc. Soc. Simul., 20, 4, 2 (2017)
[24] Groeber, P.; Lorenz, J.; Schweitzer, F., Dissonance minimization as a microfoundation of social influence in models of opinion formation, J. Math. Sociol., 38, 3, 147-174 (2014) · Zbl 1303.91136
[25] Kiesling, E.; Günther, M.; Stummer, C.; Wakolbinger, L. M., Agent-based simulation of innovation diffusion: a review, CEJOR Cent. Eur. J. Oper. Res., 20, 2, 183-230 (2012)
[26] Parry, M. E.; Cao, Q.; Song, M., Forecasting new product adoption with probabilistic neural networks, J. Prod. Innov. Manage., 28, s1, 78-88 (2011)
[27] Bartal, A.; Pliskin, N.; Tsur, O., Local/global contagion of viral/non-viral information: Analysis of contagion spread in online social networks, PLOS One, 15, 4, Article e0230811 pp. (2020)
[28] Min, B.; San Miguel, M., Competition and dual users in complex contagion processes, Sci. Rep., 8, 1, 14580 (2018)
[29] Centola, D.; Macy, M., Complex contagions and the weakness of long ties, Am. J. Sociol., 113, 3, 702-734 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.