×

Relational representation theorems for extended contact algebras. (English) Zbl 07424395

Summary: In topological spaces, the relation of extended contact is a ternary relation that holds between regular closed subsets \(A, B\) and \(D\) if the intersection of \(A\) and \(B\) is included in \(D\). The algebraic counterpart of this mereotopological relation is the notion of extended contact algebra which is a Boolean algebra extended with a ternary relation. In this paper, we are interested in the relational representation theory for extended contact algebras. In this respect, we study the correspondences between point-free and point-based models of space in terms of extended contact. More precisely, we prove new representation theorems for extended contact algebras.

MSC:

03-XX Mathematical logic and foundations

References:

[1] Balbiani, P.; Tinchev, T.; Vakarelov, D., Modal logics for region-based theories of space, Fundamenta Informaticæ, 81, 29-82 (2007) · Zbl 1142.03012
[2] Clarke, B., A calculus of individuals based on ‘connection, Notre Dame Journal of Formal Logic, 22, 204-218 (1981) · Zbl 0438.03032 · doi:10.1305/ndjfl/1093883455
[3] Clark, B., Individuals and points, Notre Dame Journal of Formal Logic, 26, 61-75 (1985) · Zbl 0597.03005 · doi:10.1305/ndjfl/1093870761
[4] Cohn, A., and J. Renz, Qualitative spatial representation and reasoning, In F. van Harmelen, V. Lifschitz, and B. Porter, (eds.), Handbook of Knowledge Representation, Elsevier, 2008, pp. 551-596.
[5] Dimov, G.; Vakarelov, D., Contact algebras and region-based theory of space: a proximity approach - I, Fundamenta Informaticæ, 74, 209-249 (2006) · Zbl 1111.68122
[6] Dimov, G.; Vakarelov, D., Contact algebras and region-based theory of space: proximity approach - II, Fundamenta Informaticæ, 74, 251-282 (2006) · Zbl 1111.68123
[7] Düntsch, I.; Vakarelov, D., Region-based theory of discrete spaces: a proximity approach, Annals of Mathematics and Artificial Intelligence, 49, 5-14 (2007) · Zbl 1124.68105 · doi:10.1007/s10472-007-9064-3
[8] Düntsch, I.; Winter, M., A representation theorem for Boolean contact algebras, Theoretical Computer Science, 347, 498-512 (2005) · Zbl 1085.03046 · doi:10.1016/j.tcs.2005.06.030
[9] Galton, A., The mereotopology of discrete space, In Ch. Freksa, and D. M. Mark, (eds.), Spatial Information Theory, Springer, 1999, pp. 251-266.
[10] Galton, A., Qualitative Spatial Change, Oxford University Press, 2000. · Zbl 0953.68129
[11] Gerla, G., Pointless geometries, In: F. Buekenhout, (ed.), Handbook of Incidence Geometry, Elsevier, 1995, pp. 1015-1031. · Zbl 0842.51006
[12] Givant, S., and P. Halmos, Introduction to Boolean Algebras, Springer, 2009. · Zbl 1168.06001
[13] Grzegorczyk, A., Axiomatization of geometry without points, Synthese, 12, 228-235 (1960) · Zbl 0201.32104 · doi:10.1007/BF00485101
[14] Ivanova, T., Extended contact algebras and internal connectedness, Studia Logica, 108, 239-254 (2020) · Zbl 1484.06048 · doi:10.1007/s11225-019-09845-6
[15] Kontchakov, R., Y. Nenov, I. Pratt-Hartmann, and M. Zakharyaschev, Topological logics with connectedness over Euclidean spaces, ACM Transactions on Computational Logic 14 2013 doi:10.1145/2480759.2480765. · Zbl 1353.68267
[16] Kontchakov, R.; Pratt-Hartmann, I.; Wolter, F.; Zakharyaschev, M., Spatial logics with connectedness predicates, Logical Methods in Computer Science, 6, 1-43 (2010) · Zbl 1201.68115 · doi:10.2168/LMCS-6(3:7)2010
[17] Kontchakov, R., I. Pratt-Hartmann, and M. Zakharyaschev, Interpreting topological logics over Euclidean spaces, In F. Lin, U. Sattler, and M. Truszczynski, (eds.), Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning, AAAI Press, 2010, pp. 534-544.
[18] Kontchakov, R.; Pratt-Hartmann, I.; Zakharyaschev, M., Spatial reasoning with \(RCC8\) and connectedness constraints in Euclidean spaces, Artificial Intelligence, 217, 43-75 (2014) · Zbl 1408.68138 · doi:10.1016/j.artint.2014.07.012
[19] De Laguna, T., Point, line and surface as sets of solids, Journal of Philosophy, 19, 449-461 (1922) · doi:10.2307/2939504
[20] Li, S.; Ying, M., Region Connection Calculus: its model and composition table, Artificial Intelligence, 145, 121-146 (2003) · Zbl 1082.68821 · doi:10.1016/S0004-3702(02)00372-7
[21] Pratt-Hartmann, I., First-order mereotopology, In M. Aiello, I. Pratt-Hartmann, and J. van Benthem, (eds.), Handbook of Spatial Logics, Springer, 2007, pp. 13-97.
[22] Randell, D., Z. Cui, and A. Cohn, A spatial logic based on regions and connection, In B. Nebel, Ch. Rich, and W. R. Swartout, (eds.), Proceedings of the Third International Conference on Principles of Knowledge Representation and Reasoning, Morgan Kaufman, 1992, pp. 165-176.
[23] Renz, J., Qualitative Spatial Reasoning with Topological Information, Springer 2002. · Zbl 0999.68206
[24] Renz, J.; Nebel, B., On the complexity of qualitative spatial reasoning: a maximal tractable fragment of the Region Connection Calculus, Artificial Intelligence, 108, 69-123 (1999) · Zbl 0914.68160 · doi:10.1016/S0004-3702(99)00002-8
[25] Tinchev, T., and D. Vakarelov, Logics of space with connectedness predicates: complete axiomatizations, In L. D. Beklemishev, V. Goranko, and V. B. Shehtman: Advances in Modal Logic, College Publications, 2010, pp. 434-453. · Zbl 1254.03019
[26] Vakarelov, D., Proximity modal logic, In M. Stokhof, and Y. Venema, (eds.), Proceedings of the 11th Amsterdam Colloquium, ILLC/Department of Philosophy and University of Amsterdam, 1997, pp. 301-308.
[27] Vakarelov, D., Region-based theory of space: algebras of regions, representation theory, and logics, In D. Gabbay, S. Goncharov, and M. Zakharyaschev, (eds.), Mathematical Problems from Applied Logic. Logics for the XXIst Century. II, Springer, 2007, pp. 267-348. · Zbl 1329.68246
[28] Vakarelov, D., A mereotopology based on sequent algebras, Journal of Applied Non-Classical Logics, 27, 342-364 (2017) · Zbl 1398.03147 · doi:10.1080/11663081.2017.1420590
[29] De Vries, H., Compact Spaces and Compactifications, Van Gorcum, 1962.
[30] Whitehead, A., Process and Reality, MacMillan, 1929. · JFM 55.0035.03
[31] Wolter, F., and M. Zakharyaschev, Spatio-temporal representation and reasoning based on RCC-8, In A. G. Cohn, F. Giunchiglia, and B. Selman, (eds.), Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning, Morgan Kaufmann, 2000, pp. 3-14.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.