×

Numerical solutions of time fractional Zakharov-Kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives. (English) Zbl 07391756

Summary: In this paper, we have studied the time-fractional Zakharov-Kuznetsov equation (TFZKE) via natural transform decomposition method (NTDM) with nonsingular kernel derivatives. The fractional derivative considered in Caputo-Fabrizio (CF) and Atangana-Baleanu derivative in Caputo sense (ABC). We employed natural transform (NT) on TFZKE followed by inverse natural transform, to obtain the solution of the equation. To validate the method, we have considered a few examples and compared with the actual results. Numerical results are in accordance with the existing results.

MSC:

65-XX Numerical analysis

References:

[1] Caputo, M., Linear models of dissipation whose Q is almost frequency independent-II, Geophysical Journal International, 13, 5, 529-539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[2] Hilfer, R., Applications of Fractional Calculus in Physics (2000), River Edge, NJ: World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 0998.26002 · doi:10.1142/3779
[3] Laroche, E.; Knittel, D., An improved linear fractional model for robustness analysis of a winding system, Control Engineering Practice, 13, 5, 659-666 (2005) · doi:10.1016/j.conengprac.2004.05.008
[4] Calderon, A.; Vinagre, B.; Feliu, V., Fractional order control strategies for power electronic buck converters, Signal Processing, 86, 10, 2803-2819 (2006) · Zbl 1172.94377 · doi:10.1016/j.sigpro.2006.02.022
[5] Sabatier, J.; Aoun, M.; Oustaloup, A.; Grgoire, G.; Ragot, F.; Roy, P., Fractional system identification for lead acid battery state of charge estimation, Signal Processing, 86, 10, 2645-2657 (2006) · Zbl 1172.93399 · doi:10.1016/j.sigpro.2006.02.030
[6] Vinagre, B.; Monje, C.; Calderon, A.; Suarej, J., Fractional PID controllers for industry application: a brief introduction, Journal of Vibration and Control, 13, 9-10, 1419-1429 (2007) · Zbl 1171.70012 · doi:10.1177/1077546307077498
[7] Monje, C.; Vinagre, B.; Feliu, V.; Chen, Y., Tuning and auto-tuning of fractional order controllers for industry applications, Control Engineering Practice, 16, 7, 798-812 (2008) · doi:10.1016/j.conengprac.2007.08.006
[8] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies (2006), Amsterdam: Elsevier Science B.V., Amsterdam · Zbl 1092.45003
[9] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus, Series on Complexity, Nonlinearity and Chaos, 3 (2012), Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1248.26011
[10] Yulita Molliq, R.; Noorani, M. S. M.; Hashim, I.; Ahmad, R. R., Approximate solutions of fractional Zakharov-Kuznetsov equations by VIM, Journal of Computational and Applied Mathematics, 233, 2, 103-108 (2009) · Zbl 1173.65066 · doi:10.1016/j.cam.2009.03.010
[11] Aruna, K.; Ravi Kanth, A. S. V., Approximate solutions of non-linear fractional Schrodinger equation via differential transform method and modified differential transform method, National Academy of Science Letters, 36, 2, 201-213 (2013) · doi:10.1007/s40009-013-0119-1
[12] Aruna, K.; Ravi Kanth, A. S. V., Two-dimensional differential transform method and modified differential transform method for solving nonlinear fractional Klein-Gordon equation, National Academy of Science Letters, 37, 2, 163-171 (2014) · doi:10.1007/s40009-013-0209-0
[13] Ravi Kanth, A. S. V.; Aruna, K., Solution of fractional third-order dispersive partial differential equations, Egyptian Journal of Basic and Applied Sciences, 2, 3, 190-199 (2015) · doi:10.1016/j.ejbas.2015.02.002
[14] Ravi Kanth, A. S. V.; Aruna, K., Solution of time fractional Black-Scholes European option pricing equation arising in financial market, Nonlinear Engineering, 5, 4, 269-276 (2016)
[15] Kumar, D.; Singh, J.; Kumar, S., Numerical computation of nonlinear fractional Zakharov-Kuznetsov equation arising in ion-acoustic waves, Journal of the Egyptian Mathematical Society, 22, 3, 373-378 (2014) · Zbl 06363304 · doi:10.1016/j.joems.2013.11.004
[16] Kumar, S.; Rashidi, M. M., New analytical method for gas dynamics equation arising in shock fronts, Computer Physics Communications, 185, 7, 1947-1954 (2014) · Zbl 1351.35253 · doi:10.1016/j.cpc.2014.03.025
[17] Kumar, D.; Agarwal, R. P.; Singh, J., A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation, Journal of Computational and Applied Mathematics, 339, 405-413 (2018) · Zbl 1404.34007 · doi:10.1016/j.cam.2017.03.011
[18] Kumar, S.; Kumar, A.; Baleanu, D., Two analytical methods for time-fractional nonlinear coupled Boussinesq-Burger’s equations arise in propagation of shallow water waves, Nonlinear Dynamics, 85, 2, 699-715 (2016) · Zbl 1355.76015 · doi:10.1007/s11071-016-2716-2
[19] Srivastava, H. M.; Kumar, D.; Singh, J., An efficient analytical technique for fractional model of vibration equation, Applied Mathematical Modelling, 45, 192-204 (2017) · Zbl 1446.74057 · doi:10.1016/j.apm.2016.12.008
[20] Prakash, A.; Veeresha, P.; Prakasha, D. G.; Goyal, M., A homotopy technique for a fractional order multi-dimensional telegraph equation via the Laplace transform, The European Physical Journal Plus, 134, 1, 19 (2019) · doi:10.1140/epjp/i2019-12411-y
[21] Veeresha, P.; Prakasha, D. G.; Kumar, D., An efficient technique for nonlinear time-fractional Klein-Fock-Gordon equation, Applied Mathematics and Computation, 364, 124637 (2020) · Zbl 1433.35454 · doi:10.1016/j.amc.2019.124637
[22] Singh, H.; Srivastava, H. M.; Kumar, D., A reliable numerical algorithm for the fractional vibration equation, Chaos, Solitons and Fractals, 103, 131-138 (2017) · Zbl 1380.65207 · doi:10.1016/j.chaos.2017.05.042
[23] Ravi Kanth, A. S. V.; Sirswal, D., Analysis and numerical simulation for a class of time fractional diffusion equation via tension spline, Numerical Algorithms, 79, 2, 479-497 (2018) · Zbl 1403.65041 · doi:10.1007/s11075-017-0447-1
[24] Ravi Kanth, A. S. V.; Deepika, S., Application and analysis of spline approximation for time fractional mobile-immobile advection-dispersion equation, Methods Partial Differential Equations, 34, 5, 1799-1819 (2018) · Zbl 1407.65193 · doi:10.1002/num.22266
[25] Ravi Kanth, A. S. V.; Garg, N., An implicit numerical scheme for a class of multi-term time-fractional diffusion equation, The European Physical Journal Plus, 134, 6, 312 (2019) · doi:10.1140/epjp/i2019-12696-8
[26] Ravi Kanth, A. S. V.; Garg, N., A numerical approach for a class of time-fractional reaction-diffusion equation through exponential B-spline method, Computational and Applied Mathematics, 39, 1 (2020) · Zbl 1442.65213 · doi:10.1007/s40314-019-1009-z
[27] Ravi Kanth, A. S. V.; Garg, N., An unconditionally stable algorithm for multiterm time fractional advection-diffusion equation with variable coefficients and convergence analysis, Methods for Partial Differential Equations, 37, 3, 1928-1945 (2021) · Zbl 07776052 · doi:10.1002/num.22629
[28] Veeresha, P.; Prakasha, D. G., Solution for fractional Zakharov-Kuznetsov equations by using two reliable techniques, Chinese Journal of Physics, 60, 313-330 (2019) · Zbl 07823594 · doi:10.1016/j.cjph.2019.05.009
[29] Ghanbari, B.; Kumar, S.; Kumar, R., A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos, Solitons and Fractals, 133, 109619 (2020) · Zbl 1483.92060 · doi:10.1016/j.chaos.2020.109619
[30] Yıldırım, A.; Gülkanat, Y., Analytical approach to fractional Zakharov-Kuznetsov equations by He’s homotopy perturbation method, Communications in Theoretical Physics, 53, 6, 1005-1010 (2010) · Zbl 1218.35196 · doi:10.1088/0253-6102/53/6/02
[31] Senol, M.; Alquran, M.; Kasmaei, H. D., On the comparison of perturbation-iteration algorithm and residual power series method to solve fractional Zakharov-Kuznetsov equation, Results in Physics, 9, 321-327 (2018) · doi:10.1016/j.rinp.2018.02.056
[32] Prakash, A.; Kumar, M.; Baleanu, D., A new iterative technique for a fractional model of nonlinear Zakharov- Kuznetsov equations via Sumudu transform, Applied Mathematics and Computation, 334, 30-40 (2018) · Zbl 1427.65322 · doi:10.1016/j.amc.2018.03.097
[33] Rawashdeh, M.; Maitama, S., Finding exact solutions of nonlinear PDEs using the natural decomposition method, Mathematicsl Methods in the Applied Sciences, 40, 1, 223-236 (2017) · Zbl 1365.35143 · doi:10.1002/mma.3984
[34] Veeresha, P.; Prakasha, D. G.; Baskonus, H. M., Novel simulations to the time-fractional Fisher’s equation, Mathematical Sciences, 13, 1, 33-42 (2019) · Zbl 1452.65296 · doi:10.1007/s40096-019-0276-6
[35] Prakasha, D. G.; Veeresha, P.; Rawashdeh, M. S., Numerical solution for (2 + 1)‐dimensional time-fractional coupled Burger equations using fractional natural decomposition method, Mathematicsl Methods in the Applied Sciences, 42, 10, 3409-3427 (2019) · Zbl 1426.65153 · doi:10.1002/mma.5533
[36] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), New York: A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York · Zbl 0789.26002
[37] Podlubny, I., Fractional Differential Equations, Mathematics in Science and Engineering, 198 (1999), San Diego, CA: Academic Press, Inc., San Diego, CA · Zbl 0924.34008
[38] Diethelm, K., The Analysis of Fractional Differential Equations (2010), Springer-Verlag, Berlin: Lecture Notes in Mathematics, Springer-Verlag, Berlin · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[39] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1, 2, 73-85 (2015)
[40] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Thermal Science, 20, 2, 763-769 (2016) · doi:10.2298/TSCI160111018A
[41] Rawashdeh, M. S.; Al-Jammal, H., New approximate solutions to fractional nonlinear systems of partial differential equations using the FNDM, Advances in Difference Equations, 235 (2016) · Zbl 1419.35186
[42] Rawashdeh, M. S., The fractional natural decomposition method: theories and applications, Mathematicsl Methods in the Applied Sciences, 40, 7, 2362-2376 (2017) · Zbl 1367.35076 · doi:10.1002/mma.4144
[43] Loonker, D.; Banerji, P. K., Solution of fractional ordinary differential equations by natural transform, International Journal of Mathematical Engineering and Science, 12, 2, 1-7 (2013)
[44] Khalouta, A.; Kadem, A., A new numerical technique for solving fractional Bratu’s initial value problems in the Caputo and Caputo-Fabrizio sense, Journal of Applied Mathematics and Computational Mechanics, 19, 1, 43-56 (2020) · doi:10.17512/jamcm.2020.1.04
[45] Adomian, G., A new approach to nonlinear partial differential equations, Journal of Mathematical Analysis and Applications, 102, 2, 420-434 (1984) · Zbl 0554.60065 · doi:10.1016/0022-247X(84)90182-3
[46] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, Fundamental Theories of Physics, 60 (1994), Dordrecht: Kluwer Academic Publishers Group, Dordrecht · Zbl 0802.65122
[47] Munro, S.; Parkes, E. J., The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions, Journal of Plasma Physics, 62, 3, 305-317 (1999) · doi:10.1017/S0022377899007874
[48] Munro, S.; Parkes, E. J., Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation, Journal of Plasma Physics, 64, 4, 411-426 (2000) · doi:10.1017/S0022377800008771
[49] Inc, M., Exact solutions with solitary patterns for the Zakharov-Kuznetsov equations with fully nonlinear dispersion, Chaos, Solitons and Fractals, 33, 5, 1783-1790 (2007) · Zbl 1129.35450 · doi:10.1016/j.chaos.2006.03.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.