×

Convergence analysis for variational inclusion problems equilibrium problems and fixed point in Hadamard manifolds. (English) Zbl 07376437

The authors consider the problem of finding \[ x^* \in \mathrm{Fix} (S) \cap EP(F) \cap \bigcap_{j=1}^n (A_j+B)^{-1} (0)\tag{1} \] in a Hadamard manifold, where \(Fix(S)\) is the set of fixed points of a quasi-nonexpansive mapping \(S\), \(EP(F)\) is the set of equilibrium points of an equilibrium function \(F\), \(B\) is a set-valued maximal monotone mapping, \(A_j\), \(j=1, 2, \dots, n\), are single-valued continuous and monotone mappings and \(\bigcap_{j=1}^n (A_j +B)^{-1} (0)\) is the set of common singularities of a system of quasi-variational inclusion problems, which is motivated and inspired by the works given by V. Colao et al. [J. Math. Anal. Appl. 388, No. 1, 61–77 (2012; Zbl 1273.49015)] and by S. Al-Homidan et al. [Numer. Funct. Anal. Optim. 40, No. 6, 621–653 (2019; Zbl 1447.49032)]. The authors propose a new algorithm to find a common solution of the problem (1) and to study the minimization problem and saddle point problem in Hadamard manifolds.
The results are useful for researchers on quasi-variational problems in Hadamard manifolds and related mathematical inequalities.

MSC:

47H10 Fixed-point theorems
47H05 Monotone operators and generalizations
47J25 Iterative procedures involving nonlinear operators
58A05 Differentiable manifolds, foundations
58C30 Fixed-point theorems on manifolds
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
Full Text: DOI

References:

[1] Rockafellar, R. T., Monotone operators and the proximal point algorithm, SIAM J. Control Optim, 14, 5, 877-898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[2] Fan, K., A Minimax Inequality and Applications, 103-113 (1972), New York: Academic Press, New York · Zbl 0302.49019
[3] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math Student, 63, 1-4, 123-145 (1994) · Zbl 0888.49007
[4] Chang, S. S., Set-valued variational inclusions in banach spaces, J. Math. Anal. Appl, 248, 2, 438-454 (2000) · Zbl 1031.49018 · doi:10.1006/jmaa.2000.6919
[5] Chang, S. S., Existence and approximation of solutions for set-valued variational inclusions in Banach spaces, Nonlinear Anal, 47, 1, 583-594 (2001) · Zbl 1042.49510 · doi:10.1016/S0362-546X(01)00203-6
[6] Chang, S. S.; Cho, Y. J.; Lee, B. S.; Jung, I. H., Generalized set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl, 246, 2, 409-422 (2000) · Zbl 1031.49017 · doi:10.1006/jmaa.2000.6795
[7] Khammahawong, K., Kumam, P., Chaipunya, P. (2019). Splitting algorithms of common solutions between equilibrium and inclusion problems on Hadamard manifolds, arXiv:1907.00364v1 [math.FA] 30 Jun 2019. · Zbl 1433.90170
[8] Sahu, D. R.; Ansari, Q. H.; Yao, J. C., The Prox-Tikhonov forward-backward method and applications, Taiwanese J. Math, 19, 2, 481-503 (2015) · Zbl 1357.47077 · doi:10.11650/tjm.19.2015.4972
[9] Takahashi, S.; Takahashi, W.; Toyoda, M., Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., 147, 1, 27-41 (2010) · Zbl 1208.47071 · doi:10.1007/s10957-010-9713-2
[10] Chang, S. S.; Lee, J. H. W.; Chan, C. K., Algorithms of common solutions to quasi variational inclusion and fixed point problems, Appl. Math. Mech. Engl. Ed, 29, 5, 571-581 (2008) · Zbl 1196.47047
[11] Li, C.; Yao, J. C., Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm, SIAM J. Control Optim, 50, 4, 2486-2514 (2012) · Zbl 1257.49011 · doi:10.1137/110834962
[12] Konnov, I., V. Equilibrium models, vol. 210 of Mathematics in Science and Engineering, and variational inequalities (2007), Amsterdam: Elsevier B. V, Amsterdam · Zbl 1140.91056
[13] Muu, L. D.; Oettli, W., Convergence of an adaptive penalty scheme for find- ing constrained equilibria, Nonlinear Anal, 18, 12, 1159-1166 (1992) · Zbl 0773.90092 · doi:10.1016/0362-546X(92)90159-C
[14] Li, C.; López, G.; Martín-Márquez, V., Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. Lond. Math. Soc, 79, 3, 663-683 (2009) · Zbl 1171.58001 · doi:10.1112/jlms/jdn087
[15] Li, C.; López, G.; Martín-Márquez, V., Iterative algorithms for nonexpansive mappings on Hadamard manifolds, Taiwan. J. Math, 14, 2, 541-559 (2010) · Zbl 1217.47118
[16] Ansari, Q. H.; Babu, F.; Li, X., Variational inclusion problems in Hadamard manifolds, J. Nonlinear Convex Anal, 19, 2, 219-237 (2018) · Zbl 1395.49013
[17] Suliman, A.-H.; Ansari, Q. H.; Babu, F., Halpern- and Mann-type algorithms for fixed points and inclusion problems on Hadamard Manifolds, Numer. Funct. Anal. Opt, 40, 6, 621-653 (2019) · Zbl 1447.49032
[18] Iusem, A. N., An iterative algorithm for the variational inequality problem, Comput. Appl. Math, 13, 103-114 (1994) · Zbl 0811.65049
[19] Li, C.; López, G.; Martín-Márquez, V.; Wang, J.-H., Resolvents of set-valued monotone vector fields in Hadamard manifolds, Set-Valued Anal, 19, 3, 361-383 (2011) · Zbl 1239.47043 · doi:10.1007/s11228-010-0169-1
[20] Ansari, Q. H.; Islam, M.; Yao, J. C., Nonsmooth variational inequalities on Hadamard manifolds, Appl. Anal. V, 99, 2, 340C358 (2020) · Zbl 1431.49003
[21] da Cruz Neto, J. X.; Ferreira, O. P.; Lucambio., Pérez, L. R., Monotone point-to-set vector fields, Balkan J. Geometry Appl, 5, 1, 69-79 (2000) · Zbl 0978.90076
[22] Colao, V.; López, G.; Marino, G.; Martín-Márquez, V., Equilibrium problems in Hadamard manifolds, J. Math. Anal. Appl, 388, 1, 61-71 (2012) · Zbl 1273.49015 · doi:10.1016/j.jmaa.2011.11.001
[23] Ceng, L. C.; Li, X.; Qin, X., Parallel proximal point methods for systems of vector optimization problems on Hadamard manifolds without convexity, Optimization., 69, 2, 357-383 (2020) · Zbl 1432.90120 · doi:10.1080/02331934.2019.1625354
[24] Shih-Sen Chang, Tang, J. F., Wen, C F. (2021). New algorithm for fixed points and monotone inclusion problems on Hadamard manifolds, Acta Mathematica Scientia, English Series (in print).
[25] Wang, X.; López, G.; Li, C.; Yao, J. C., Equilibrium problems on Riemannian mani-folds with applications, J Math Anal Appl, 473, 2, 866-891 (2019) · Zbl 1414.53034 · doi:10.1016/j.jmaa.2018.12.073
[26] Yao, Y.; Postolache, M.; Liou, Y. C.; Yao, Z., Construction algorithms for a class of monotone variational inequalities, Optim. Lett., 10, 7, 1519-1528 (2016) · Zbl 1380.90266 · doi:10.1007/s11590-015-0954-8
[27] Sakai, T., Riemannian Geometry, Translations of Mathematical Monographs (1996), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0886.53002
[28] Ferreira, O. P.; Oliveira, P. R., Proximal point algorithm on Riemannian manifolds, Optimization, 51, 2, 257-270 (2002) · Zbl 1013.49024 · doi:10.1080/02331930290019413
[29] Beck, A.; Teboulle, M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci, 2, 1, 183-202 (2009) · Zbl 1175.94009 · doi:10.1137/080716542
[30] Chang, S. S.; Wen, C. F.; Yao, J. C., Common zero point for a finite family of inclusion problems of accretive mappings in banach spaces, Optimization, 67, 8, 1183-1196 (2018) · Zbl 1402.90119 · doi:10.1080/02331934.2018.1470176
[31] Yunier, J.; Cruz, B., On proximal subgradient splitting method for minimizing the sum of two nonsmooth convex functions, Set-Val. Var. Anal, 25, 245-263 (2017) · Zbl 1365.65160
[32] Zhao, X.; Ng, K. F.; Li, C.; Yao, J. C., Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems, Appl. Math. Optim., 78, 3, 613-641 (2018) · Zbl 1492.47089 · doi:10.1007/s00245-017-9417-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.