×

Improved second-order unconditionally stable schemes of linear multi-step and equivalent single-step integration methods. (English) Zbl 07360505

Summary: Second-order unconditionally stable schemes of linear multi-step methods, and their equivalent single-step methods, are developed in this paper. The parameters of the linear two-, three-, and four-step methods are determined for optimal accuracy, unconditional stability and tunable algorithmic dissipation. The linear three- and four-step schemes are presented for the first time. As an alternative, corresponding single-step methods, spectrally equivalent to the multi-step ones, are developed by introducing the required intermediate variables. Their formulations are equivalent to that of the corresponding multi-step methods; their use is more convenient, owing to being self-starting. Compared with existing second-order methods, the proposed ones, especially the linear four-step method and its alternative single-step one, show higher accuracy for a given degree of algorithmic dissipation. The accuracy advantage and other properties of the newly developed schemes are demonstrated by several illustrative examples.

MSC:

74-XX Mechanics of deformable solids

References:

[1] Arnold, M.; Brüls, O., Convergence of the generalized-\( \alpha\) scheme for constrained mechanical systems, Multibody SysDyn, 18, 2, 185-202 (2007) · Zbl 1121.70003 · doi:10.1007/s11044-007-9084-0
[2] Bashforth, F.; Adams, JC, An attempt to test the theories of capillary action: by comparing the theoretical and measured forms of drops of fluid (1883), Cambridge: Cambridge University Press, Cambridge
[3] Bathe, KJ, Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme, Comput Struct, 85, 7-8, 437-445 (2007) · doi:10.1016/j.compstruc.2006.09.004
[4] Bathe, KJ; Baig, MMI, On a composite implicit time integration procedure for nonlinear dynamics, Comput Struct, 83, 31-32, 2513-2524 (2005) · doi:10.1016/j.compstruc.2005.08.001
[5] Bathe, KJ; Noh, G., Insight into an implicit time integration scheme for structural dynamics, Comput Struct, 98, 1-6 (2012) · doi:10.1016/j.compstruc.2012.01.009
[6] Butcher, JC, Implicit Runge-Kutta processes, Math Comput, 18, 85, 50-64 (1964) · Zbl 0123.11701 · doi:10.1090/S0025-5718-1964-0159424-9
[7] Butcher, JC, Numerical methods for ordinary differential equations (2016), Hoboken: Wiley, Hoboken · Zbl 1354.65004 · doi:10.1002/9781119121534
[8] Chandra, Y.; Zhou, Y.; Stanciulescu, I.; Eason, T.; Spottswood, S., A robust composite time integration scheme for snap-through problems, Comput Mech, 55, 5, 1041-1056 (2015) · Zbl 1329.74306 · doi:10.1007/s00466-015-1152-3
[9] Chung, J.; Hulbert, G., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\( \alpha\) method, J Appl Mech, 60, 371-375 (1993) · Zbl 0775.73337 · doi:10.1115/1.2900803
[10] Chung, J.; Lee, JM, A new family of explicit time integration methods for linear and non-linear structural dynamics, Int J Numer Meth Eng, 37, 23, 3961-3976 (1994) · Zbl 0814.73074 · doi:10.1002/nme.1620372303
[11] Dahlquist, GG, A special stability problem for linear multistep methods, BIT Numer Math, 3, 1, 27-43 (1963) · Zbl 0123.11703 · doi:10.1007/BF01963532
[12] Gear, CW, Numerical initial value problems in ordinary differential equations (1971), New Jersey: Prentice Hall PTR, New Jersey · Zbl 1145.65316
[13] Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I: Nonstiff problems, 2nd edn. Springer Verlag, Berlin · Zbl 0789.65048
[14] Hilber, HM; Hughes, TJ, Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics, Earthq Eng Struct Dyn, 6, 1, 99-117 (1978) · doi:10.1002/eqe.4290060111
[15] Hilber, HM; Hughes, TJ; Taylor, RL, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthq Eng Struct Dyn, 5, 3, 283-292 (1977) · doi:10.1002/eqe.4290050306
[16] Iserles, A., A first course in the numerical analysis of differential equations (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1171.65060
[17] Jay OL, Negrut D (2009) A second order extension of the generalized-\( \alpha\) method for constrained systems in mechanics. In: Multibody dynamics. Springer, New York, pp 143-158 · Zbl 1303.70004
[18] Ji, Y.; Xing, Y., An optimized three-sub-step composite time integration method with controllable numerical dissipation, Comput Struct, 231, 106210 (2020) · doi:10.1016/j.compstruc.2020.106210
[19] Kennedy, CA; Carpenter, MH, Diagonally implicit Runge-Kutta methods for stiff ODEs, Appl Numer Math, 146, 221-244 (2019) · Zbl 1437.65061 · doi:10.1016/j.apnum.2019.07.008
[20] Kim, KT; Zhang, L.; Bathe, KJ, Transient implicit wave propagation dynamics with overlapping finite elements, Comput Struct, 199, 18-33 (2018) · doi:10.1016/j.compstruc.2018.01.007
[21] Kim, W., A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics, Eng Struct, 195, 358-372 (2019) · doi:10.1016/j.engstruct.2019.05.095
[22] Kim, W., An improved implicit method with dissipation control capability: The simple generalized composite time integration algorithm, Appl Math Model, 81, 910-930 (2020) · Zbl 1481.70075 · doi:10.1016/j.apm.2020.01.043
[23] Kim, W.; Choi, SY, An improved implicit time integration algorithm: the generalized composite time integration algorithm, Comput Struct, 196, 341-354 (2018) · doi:10.1016/j.compstruc.2017.10.002
[24] Kim, W.; Lee, JH, An improved explicit time integration method for linear and nonlinear structural dynamics, Comput Struct, 206, 42-53 (2018) · doi:10.1016/j.compstruc.2018.06.005
[25] Kim, W.; Reddy, J., An improved time integration algorithm: A collocation time finite element approach, Int J Struct Stab Dyn, 17, 2, 1750024 (2017) · Zbl 1535.74643 · doi:10.1142/S0219455417500249
[26] Kim W, Reddy J (2020) A comparative study of implicit and explicit composite time integration schemes. Int J Struct Stab Dyn, p 2041003 · Zbl 1535.65094
[27] Kuhl, D.; Crisfield, M., Energy-conserving and decaying algorithms in non-linear structural dynamics, Int J Numer Meth Eng, 45, 5, 569-599 (1999) · Zbl 0946.74078 · doi:10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
[28] Kwon, SB; Bathe, KJ; Noh, G., An analysis of implicit time integration schemes for wave propagations, Comput Struct, 230, 106188 (2020) · doi:10.1016/j.compstruc.2019.106188
[29] Li, J.; Yu, K.; He, H., A second-order accurate three sub-step composite algorithm for structural dynamics, Appl Math Model, 77, 1391-1412 (2020) · Zbl 1481.65107 · doi:10.1016/j.apm.2019.08.022
[30] Li, J.; Yu, K.; Li, X., A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis, Nonlinear Dyn, 96, 4, 2475-2507 (2019) · doi:10.1007/s11071-019-04936-4
[31] Masarati P, Lanz M, Mantegazza P (2001) Multistep integration of ordinary, stiff and differential-algebraic problems for multibody dynamics applications. In: Xvi Congress Nazionale AIDAA, pp 1-10
[32] Masarati P, Morandini M, Mantegazza P (2014) An efficient formulation for general-purpose multibody/multiphysics analysis. J Comput Nonlinear Dyn 9(4)
[33] Newmark, NM, A method of computation for structural dynamics, J Eng Mech Div, 85, 3, 67-94 (1959)
[34] Noh, G.; Bathe, KJ, An explicit time integration scheme for the analysis of wave propagations, Comput Struct, 129, 178-193 (2013) · doi:10.1016/j.compstruc.2013.06.007
[35] Noh, G.; Bathe, KJ, The Bathe time integration method with controllable spectral radius: the \(\rho_{\infty }\)-Bathe method, Comput Struct, 212, 299-310 (2019) · doi:10.1016/j.compstruc.2018.11.001
[36] Noh, G.; Ham, S.; Bathe, KJ, Performance of an implicit time integration scheme in the analysis of wave propagations, Comput Struct, 123, 93-105 (2013) · doi:10.1016/j.compstruc.2013.02.006
[37] Soares, D. Jr, A novel family of explicit time marching techniques for structural dynamics and wave propagation models, Comput Methods Appl Mech Eng, 311, 838-855 (2016) · Zbl 1439.65078 · doi:10.1016/j.cma.2016.09.021
[38] Tamma, KK; Har, J.; Zhou, X.; Shimada, M.; Hoitink, A., An overview and recent advances in vector and scalar formalisms: space/time discretizations in computational dynamics-a unified approach, Archives Comput Methods Eng, 18, 2, 119-283 (2011) · Zbl 1284.70005 · doi:10.1007/s11831-011-9060-y
[39] Wilson, EL, A computer program for the dynamic stress analysis of underground structures. Tech. rep. (1968), California: California Univ Berkeley Structural Engineering Lab, California
[40] Wood, W.; Bossak, M.; Zienkiewicz, O., An alpha modification of Newmark’s method, Int J Numer Meth Eng, 15, 10, 1562-1566 (1980) · Zbl 0441.73106 · doi:10.1002/nme.1620151011
[41] Xie X (1985) Stable polynomials with complex coefficients. In: 24th IEEE conference on decision and control, pp 324-325
[42] Zhang, H.; Xing, Y., Optimization of a class of composite method for structural dynamics, Comput Struct, 202, 60-73 (2018) · doi:10.1016/j.compstruc.2018.03.006
[43] Zhang, H.; Xing, Y., Two novel explicit time integration methods based on displacement-velocity relations for structural dynamics, Comput Struct, 221, 127-141 (2019) · doi:10.1016/j.compstruc.2019.05.018
[44] Zhang, J., A-stable two-step time integration methods with controllable numerical dissipation for structural dynamics, Int J Numer Meth Eng, 121, 54-92 (2020) · Zbl 07841253 · doi:10.1002/nme.6188
[45] Zhou, X.; Tamma, KK, Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics, Int J Numer Meth Eng, 59, 5, 597-668 (2004) · Zbl 1068.74616 · doi:10.1002/nme.873
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.