×

Hierarchical deep-learning neural networks: finite elements and beyond. (English) Zbl 07360501

Summary: The hierarchical deep-learning neural network (HiDeNN) is systematically developed through the construction of structured deep neural networks (DNNs) in a hierarchical manner, and a special case of HiDeNN for representing Finite Element Method (or HiDeNN-FEM in short) is established. In HiDeNN-FEM, weights and biases are functions of the nodal positions, hence the training process in HiDeNN-FEM includes the optimization of the nodal coordinates. This is the spirit of r-adaptivity, and it increases both the local and global accuracy of the interpolants. By fixing the number of hidden layers and increasing the number of neurons by training the DNNs, rh-adaptivity can be achieved, which leads to further improvement of the accuracy for the solutions. The generalization of rational functions is achieved by the development of three fundamental building blocks of constructing deep hierarchical neural networks. The three building blocks are linear functions, multiplication, and inversion. With these building blocks, the class of deep learning interpolation functions are demonstrated for interpolation theories such as Lagrange polynomials, NURBS, isogeometric, reproducing kernel particle method, and others. In HiDeNN-FEM, enrichment functions through the multiplication of neurons is equivalent to the enrichment in standard finite element methods, that is, generalized, extended, and partition of unity finite element methods. Numerical examples performed by HiDeNN-FEM exhibit reduced approximation error compared with the standard FEM. Finally, an outlook for the generalized HiDeNN to high-order continuity for multiple dimensions and topology optimizations are illustrated through the hierarchy of the proposed DNNs.

MSC:

74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Deng, L.; Dong, Yu, Deep learning: methods and applications, Found Trends Signal Process, 7, 3-4, 197-387 (2014) · Zbl 1315.68208 · doi:10.1561/2000000039
[2] Goodfellow, I.; Bengio, Y.; Courville, A., Deep learning (2016), Cambridge: MIT Press, Cambridge · Zbl 1373.68009
[3] Hornik, K.; Stinchcombe, M.; White, H., Multilayer feedforward networks are universal approximators, Neural Netw, 2, 5, 359-366 (1989) · Zbl 1383.92015 · doi:10.1016/0893-6080(89)90020-8
[4] Cybenko, G., Approximation by superpositions of a sigmoidal function, Math Control Signals Syst, 2, 4, 303-314 (1989) · Zbl 0679.94019 · doi:10.1007/BF02551274
[5] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 7553, 436-444 (2015) · doi:10.1038/nature14539
[6] Hinton, GE; Salakhutdinov, RR, Reducing the dimensionality of data with neural networks, Science, 313, 5786, 504-507 (2006) · Zbl 1226.68083 · doi:10.1126/science.1127647
[7] Lee, H.; Kang, IS; and, Neural algorithm for solving differential equations, J Comput Phys, 91, 1, 110-131 (1990) · Zbl 0717.65062 · doi:10.1016/0021-9991(90)90007-N
[8] Meade, AJ Jr; Fernandez, AA, The numerical solution of linear ordinary differential equations by feedforward neural networks, Math Comput Model, 19, 12, 1-25 (1994) · Zbl 0807.65079 · doi:10.1016/0895-7177(94)90095-7
[9] Lagaris, IE; Likas, A.; Fotiadis, DI, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans Neural Netw, 9, 5, 987-1000 (1998) · doi:10.1109/72.712178
[10] Wu, JL; Wang, JX; Xiao, H.; Ling, J., A priori assessment of prediction confidence for data-driven turbulence modeling, Flow Turbul Combust, 99, 25-46 (2017) · doi:10.1007/s10494-017-9807-0
[11] Xiao, H.; Wu, JL; Wang, JX; Sun, R.; Roy, CJ, Quantifying and reducing model-form uncertainties in reynolds-averaged navier-stokes simulations: a data-driven, physics-informed bayesian approach, J Comput Phys, 324, 115-136 (2016) · Zbl 1371.76082 · doi:10.1016/j.jcp.2016.07.038
[12] Weinan, E.; Han, J.; Jentzen, A., Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Commun Math Stat, 5, 4, 349-380 (2017) · Zbl 1382.65016 · doi:10.1007/s40304-017-0117-6
[13] Berg, J.; Nyström, K., A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing, 317, 28-41 (2018) · doi:10.1016/j.neucom.2018.06.056
[14] Raissi M, Perdikaris P, Karniadakis GE (2017) Physics informed deep learning (part i): data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561 · Zbl 1382.65229
[15] Raissi, M.; Perdikaris, P.; Karniadakis, GE, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J Comput Phys, 378, 686-707 (2019) · Zbl 1415.68175 · doi:10.1016/j.jcp.2018.10.045
[16] Sirignano, J.; Spiliopoulos, K., DGM: a deep learning algorithm for solving partial differential equations, J Comput Phys, 375, 1339-1364 (2018) · Zbl 1416.65394 · doi:10.1016/j.jcp.2018.08.029
[17] Hughes, TJR, The finite element method: linear static and dynamic finite element analysis (2012), Mineola: Courier Corporation, Mineola
[18] Belytschko, T.; Liu, WK; Moran, B.; Elkhodary, K., Nonlinear finite elements for continua and structures (2013), New York: Wiley, New York · Zbl 1279.74002
[19] Höllig, K., Finite element methods with B-splines (2003), Philadelphia: SIAM, Philadelphia · Zbl 1020.65085 · doi:10.1137/1.9780898717532
[20] Rogers, DF, An introduction to NURBS: with historical perspective (2000), Amsterdam: Elsevier, Amsterdam
[21] Hughes, TJR; Cottrell, JA; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput Methods Appl Mech Eng, 194, 39, 4135-4195 (2005) · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[22] Schillinger, D.; Dede, L.; Scott, MA; Evans, JA; Borden, MJ; Rank, E.; Hughes, TJR, An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput Methods Appl Mech Eng, 249, 116-150 (2012) · Zbl 1348.65055 · doi:10.1016/j.cma.2012.03.017
[23] Cottrell, JA; Hughes, TJR; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA (2009), New York: Wiley, New York · Zbl 1378.65009 · doi:10.1002/9780470749081
[24] Liu, WK; Jun, S.; Zhang, YF, Reproducing kernel particle methods, Int J Numer Methods Fluids, 20, 8-9, 1081-1106 (1995) · Zbl 0881.76072 · doi:10.1002/fld.1650200824
[25] Chen, JS; Pan, C.; Cheng-Tang, W.; Liu, WK, Reproducing kernel particle methods for large deformation analysis of non-linear structures, Comput Methods Appl Mech Eng, 139, 1-4, 195-227 (1996) · Zbl 0918.73330 · doi:10.1016/S0045-7825(96)01083-3
[26] Li, S.; Liu, WK, Meshfree and particle methods and their applications, Appl Mech Rev, 55, 1, 1-34 (2002) · doi:10.1115/1.1431547
[27] Duarte, CA; Babuška, I.; Oden, JT, Generalized finite element methods for three-dimensional structural mechanics problems, Comput Struct, 77, 2, 215-232 (2000) · doi:10.1016/S0045-7949(99)00211-4
[28] Belytschko, T.; Moës, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Int J Numer Methods Eng, 50, 4, 993-1013 (2001) · Zbl 0981.74062 · doi:10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
[29] Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. In Research Report/Seminar für Angewandte Mathematik, volume 1996. Eidgenössische Technische Hochschule, Seminar für Angewandte Mathematik · Zbl 0881.65099
[30] Zhang L, Tang S, Liu WK (2020) Analytical expression of RKPM shape functions. Comput Mech 1-10 · Zbl 1467.74094
[31] Chilimbi T, Suzue Y, Apacible J, Kalyanaraman K (2014) Project adam: building an efficient and scalable deep learning training system. In: 11th USENIX symposium on operating systems design and implementation (OSDI 14), 571-582
[32] ABAQUS/Standard User’s Manual (2016). Dassault Systèmes Simulia Corp, United States
[33] Weinan, E.; Bing, Yu, The deep ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun Math Stat, 6, 1, 1-12 (2018) · Zbl 1392.35306
[34] Bendsoe, MP; Sigmund, O., Topology optimization: theory, methods, and applications (2013), New York: Springer, New York · Zbl 1059.74001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.