×

Continuous analogue to iterative optimization for PDE-constrained inverse problems. (English) Zbl 07352692

Summary: The parameters of many physical processes are unknown and have to be inferred from experimental data. The corresponding parameter estimation problem is often solved using iterative methods such as steepest descent methods combined with trust regions. For a few problem classes also continuous analogues of iterative methods are available. In this work, we expand the application of continuous analogues to function spaces and consider PDE (partial differential equation)-constrained optimization problems. We derive a class of continuous analogues, here coupled ODE (ordinary differential equation)-PDE models, and prove their convergence to the optimum under mild assumptions. We establish sufficient bounds for local stability and convergence for the tuning parameter of this class of continuous analogues, the retraction parameter. To evaluate the continuous analogues, we study the parameter estimation for a model of gradient formation in biological tissues. We observe good convergence properties, indicating that the continuous analogues are an interesting alternative to state-of-the-art iterative optimization methods.

MSC:

65-XX Numerical analysis
90-XX Operations research, mathematical programming
35K57 Reaction-diffusion equations
37N40 Dynamical systems in optimization and economics
35R30 Inverse problems for PDEs

Software:

PESTO
Full Text: DOI

References:

[1] Isakov V. Inverse problems for partial differential equations. 2nd ed. New York, NY: Springer; 2006. (Applied Mathematical Sciences; 127). · Zbl 1092.35001
[2] Tarantola A. Inverse problem theory and methods for model parameter estimation. Philadelphia: SIAM Society for Industrial and Applied Mathematics; 2005. · Zbl 1074.65013 · doi:10.1137/1.9780898717921
[3] Banks H, Kunisch K. Estimation techniques for distributed parameter systems. Boston, Basel, Berlin: Birkhäuser; 1989. (Systems & Control: Foundations & Applications; 1). · Zbl 0695.93020 · doi:10.1007/978-1-4612-3700-6
[4] Bock H, Carraro T, Jäeger W, et al. Model based parameter estimation: theory and applications. Berlin, Heidelberg: Springer; 2013. (Contributions in Mathematical and Computational Sciences; 4). · Zbl 1261.65002 · doi:10.1007/978-3-642-30367-8
[5] Carvalho EP, Martínez J, Martínez JM, et al. On optimization strategies for parameter estimation in models governed by partial differential equations. Math Comput Simul. 2015;114:14-24. doi: 10.1016/j.matcom.2010.07.020 · Zbl 1540.65169 · doi:10.1016/j.matcom.2010.07.020
[6] Hinze M, Pinnau R, Ulbrich M, et al. Optimization with PDE constraints. Netherlands: Springer; 2009. (Mathematical Modelling: Theory and Applications; 23). · Zbl 1167.49001
[7] Ito K, Kunisch K. Lagrange multiplier approach to variational problems and applications. Philadelphia: SIAM Society for Industrial and Applied Mathematics; 2008. (Advances in Design and Control; 15). · Zbl 1156.49002 · doi:10.1137/1.9780898718614
[8] Xun X, Cao J, Mallick B, et al. Parameter estimation of partial differential equation models. J Am Stat Assoc. 2013;108:1009-1020. doi: 10.1080/01621459.2013.794730 · Zbl 06224983
[9] Nielsen BF, Lysaker M, Grøttum P. Computing ischemic regions in the heart with the bidomain model – first steps towards validation. IEEE Trans Med Imaging. 2013 Jun;32(6):1085-1096. doi: 10.1109/TMI.2013.2254123 · doi:10.1109/TMI.2013.2254123
[10] Airapetyan RG, Ramm AG, Smirnova AB. Continuous methods for solving nonlinear ill-posed problems. Operator Theory Appl. 2000;25:111. · Zbl 0964.47035
[11] Kaltenbacher B, Neubauer A, Ramm AG. Convergence rates of the continuous regularized Gauss-Newton method. J Inv Ill-Posed Problems. 2002;10:261-280. doi: 10.1515/jiip.2002.10.3.261 · Zbl 1016.65038 · doi:10.1515/jiip.2002.10.3.261
[12] Tanabe K. Continuous Newton-Raphson method for solving and underdetermined system of nonlinear equations. Nonlinear Anal Theory Methods Appl. 1979;3(4):495-503. doi: 10.1016/0362-546X(79)90064-6 · Zbl 0435.65048 · doi:10.1016/0362-546X(79)90064-6
[13] Tanabe K. A geometric method in nonlinear programming. J Optim Theory Appl. 1980;30(2):181-210. doi: 10.1007/BF00934495 · Zbl 0396.90078 · doi:10.1007/BF00934495
[14] Watson L, Bartholomew-Biggs M, Ford J. Optimization and nonlinear equations. Journal of computational and applied mathematics. Vol. 124. Amsterdam: The Netherlands; 2001. · Zbl 0959.00012
[15] Tanabe K. Global analysis of continuous analogues of the Levenberg-Marquardt and Newton-Raphson methods for solving nonlinear equations. Ann Inst Statist Math. 1985;37(Part B):189-203. doi: 10.1007/BF02481091 · Zbl 0575.65042 · doi:10.1007/BF02481091
[16] Fiedler A, Raeth S, Theis FJ, et al. Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints. BMC Syst Biol. 2016 Aug;10:80.
[17] Rosenblatt M, Timmer J, Kaschek D. Customized steady-state constraints for parameter estimation in non-linear ordinary differential equation models. Front Cell Dev Biol. 2016;4:41. doi: 10.3389/fcell.2016.00041 · doi:10.3389/fcell.2016.00041
[18] Zeidler E. Nonlinear functional analysis and its applications II/B: nonlinear monotone operators. New York, NY: Springer; 1990. · Zbl 0684.47029
[19] Faller D, Klingmüller U, Timmer J. Simulation methods for optimal experimental design in systems biology. Simulation. 2003;79(12):717-725. doi: 10.1177/0037549703040937 · doi:10.1177/0037549703040937
[20] Potschka A. Backward step control for global Newton-type methods. SIAM J Numer Anal. 2016;54(1):361-387. doi: 10.1137/140968586 · Zbl 1382.65145 · doi:10.1137/140968586
[21] Potschka A. Backward step control for Hilbert space problems. 2017; ArXiv:1608.01863 [math.NA]. · Zbl 1412.65039
[22] Engl H, Hanke M, Neubauer A. Regularization of inverse problems. Dordrecht: Kluwer Academic Publishers; 2000. (Mathematics and Its Applications; 375). · Zbl 0859.65054
[23] Alvarez D, Vollmann EH, von Andrian UH. Mechanisms and consequences of dendritic cell migration. Immunity. 2008;29(3):325-342. 2017/05/19. doi: 10.1016/j.immuni.2008.08.006 · doi:10.1016/j.immuni.2008.08.006
[24] Mellman I, Steinman RM. Dendritic cells. Cell. 2001;106(3):255-258. 2017/05/19. doi: 10.1016/S0092-8674(01)00449-4 · doi:10.1016/S0092-8674(01)00449-4
[25] Hock S, Hasenauer J, Theis FJ. Modeling of 2D diffusion processes based on microscopy data: parameter estimation and practical identifiability analysis. BMC Bioinformatics. 2013;14(10):1-6.
[26] Schumann K, Lammermann T, Bruckner M, et al. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity. 2010 May;32(5):703-713. doi: 10.1016/j.immuni.2010.04.017 · doi:10.1016/j.immuni.2010.04.017
[27] Weber M, Hauschild R, Schwarz J, et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science. 2013;339:328-332. doi: 10.1126/science.1228456 · doi:10.1126/science.1228456
[28] Hross SParameter estimation and uncertainty quantification for reaction-diffusion models in image based systems biology [dissertation]. München: Technische Universität München; 2016.
[29] Raue A, Schilling M, Bachmann J, et al. Lessons learned from quantitative dynamical modeling in systems biology. PLoS One. 2013 Sep;8(9):e74335. doi: 10.1371/journal.pone.0074335 · doi:10.1371/journal.pone.0074335
[30] Stapor P, Weindl D, Ballnus B, et al. Pesto: parameter estimation toolbox. Bioinformatics. 2017 Oct;btx676-btx676. Available from: http://dx.doi.org/10.1093/bioinformatics/btx676.
[31] Byrd RH, Hribar ME, Nocedal J. An interior point algorithm for large-scale nonlinear programming. SIAM J Optim. 1999;9:877-900. doi: 10.1137/S1052623497325107 · Zbl 0957.65057 · doi:10.1137/S1052623497325107
[32] Byrd RH, Gilbert JC, Nocedal J. A trust region method based on interior point techniques for nonlinear programming. Math Program. 2000 Nov;89(1):149-185. Available from: http://dx.doi.org/10.1007/PL00011391. · Zbl 1033.90152 · doi:10.1007/PL00011391
[33] Waltz RA, Morales JL, Nocedal J, et al. An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math Program. 2006 Jul;107(3):391-408. Available from: http://dx.doi.org/10.1007/s10107-004-0560-5. · Zbl 1134.90053 · doi:10.1007/s10107-004-0560-5
[34] Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997 Apr;1(1):67-82. doi: 10.1109/4235.585893 · doi:10.1109/4235.585893
[35] Boyd S, Vandenberghe L. Convex optimisation. UK: Cambridge University Press; 2004. · Zbl 1058.90049 · doi:10.1017/CBO9780511804441
[36] Boiger R, Hasenauer J, Hross S, et al. Integration based profile likelihood calculation for PDE constrained parameter estimation problems. Inverse Prob. 2016 Dec;32(12):125009. doi: 10.1088/0266-5611/32/12/125009 · Zbl 1359.62472 · doi:10.1088/0266-5611/32/12/125009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.