×

An efficient algorithm to solve damped forced oscillator problems by Bernoulli operational matrix of integration. (English) Zbl 07330592

Summary: An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives was obtained in Yang and Srivastava (Commun Nonlinear Sci Numer Simul 29(1-3):499-504, 2015). In this paper, we obtain the numerical solution of damped forced oscillator problems by employing the operational matrix of integration of Bernoulli orthonormal polynomials. The operational matrix of integration is determined with the help of the integral operator on Bernoulli orthonormal polynomials. Numerical examples of two different problems of spring are given to delineate the performance and perfection of this approach and compared the results with the exact solution.

MSC:

65T60 Numerical methods for wavelets
34A35 Ordinary differential equations of infinite order

References:

[1] Boutiche, MA; Rahmani, M.; Srivastava, HM, Explicit formulas associated with some families of generalized Bernoulli and Euler polynomials, Mediterr. J. Math., 14, 2, 10 (2017) · Zbl 1402.11034 · doi:10.1007/s00009-017-0891-0
[2] Cheon, G-S, A note on the Bernoulli and Euler polynomials, Appl. Math. Lett., 16, 3, 365-368 (2003) · Zbl 1055.11016 · doi:10.1016/S0893-9659(03)80058-7
[3] Choi, J.; Kim, Y-H, A note on high order Bernoulli numbers and polynomials using differential equations, Appl. Math. Comput., 249, 480-486 (2014) · Zbl 1338.11026
[4] Costabile, F.; Dell’Accio, F.; Gualtieri, M. I., A new approach to Bernoulli polynomials, Rend. Mat. Appl. (7), 26, 1, 1-12 (2006) · Zbl 1105.11002
[5] Dilcher, K., Sums of products of Bernoulli numbers, J. Number Theory, 60, 1, 23-41 (1996) · Zbl 0863.11011 · doi:10.1006/jnth.1996.0110
[6] Granville, A.; Sun, Z-W, Values of Bernoulli polynomials, Pac. J. Math., 172, 1, 117-137 (1996) · Zbl 0856.11008 · doi:10.2140/pjm.1996.172.117
[7] Gu, JS; Jiang, WS, The Haar wavelets operational matrix of integration, Int. J. Syst. Sci., 27, 623-628 (1996) · Zbl 0875.93116 · doi:10.1080/00207729608929258
[8] He, Y.; Araci, S.; Srivastava, HM; Abdel-Aty, M., Higher-order convolutions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Mathematics, 6, 12, 1-14 (2018) · Zbl 1425.11036
[9] Lehmer, DH, A new approach to Bernoulli polynomials, Am. Math. Mon., 95, 10, 905-911 (1988) · Zbl 0663.10009 · doi:10.1080/00029890.1988.11972114
[10] Rama, BB; Dukkipati, RV, Advanced Dynamics (2001), Pangbourne: Alpha Science, Pangbourne · Zbl 0971.70001
[11] Rosen, KH, Handbook of Discrete and Combinatorial Mathematics (2000), Boca Raton: CRC Press, Boca Raton · Zbl 1044.00002
[12] Ross, SL, Differential Equations (2007), New York: Wiley, New York
[13] Saadatmandi, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59, 3, 1326-1336 (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[14] Simmons, GF, Differential Equations with Applications and Historical Notes (1972), New York: McGraw-Hill Book Co., New York · Zbl 0231.34001
[15] Singh, M.; Sharma, S.; Rawan, S., Solution of linear differential equations using operational matrix of Bernoulli orthonormal polynomials, Poincare J. Anal. Appl., 7, 1, 51-60 (2020) · Zbl 1488.34095
[16] Srivastava, HM; Todorov, PG, An explicit formula for the generalized Bernoulli polynomials, J. Math. Anal. Appl., 130, 2, 509-513 (1988) · Zbl 0621.33008 · doi:10.1016/0022-247X(88)90326-5
[17] Srivastava, HM; Masjed-Jamei, M.; Beyki, MR, A parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Appl. Math. Inf. Sci., 12, 5, 907-916 (2018) · doi:10.18576/amis/120502
[18] Srivastava, H. M.; Kurt, B.; Kurt, V., Identities and relations involving the modified degenerate hermite-based Apostol-Bernoulli and Apostol-Euler polynomials., Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113, 2, 1299-1313 (2019) · Zbl 1429.11047 · doi:10.1007/s13398-018-0549-1
[19] Srivastava, HM; Masjed-Jamei, M.; Beyki, MR, Some new generalizations and applications of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Rocky Mt. J. Math., 49, 2, 681-697 (2019) · Zbl 1418.11038 · doi:10.1216/RMJ-2019-49-2-681
[20] Thomsen, JJ, Vibrations and Stability—Order and Chaos (1997), Cambridge: McGraw-Hill, Cambridge
[21] Toutounian, F.; Tohidi, E., A new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysis, Appl. Math. Comput., 223, 298-310 (2013) · Zbl 1329.65238
[22] Tuenter, HJH, A symmetry of power sum polynomials and Bernoulli numbers, Am. Math. Mon., 108, 3, 258-261 (2001) · Zbl 0983.11008 · doi:10.1080/00029890.2001.11919750
[23] Yang, X-J; Srivastava, HM, An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 29, 1-3, 499-504 (2015) · Zbl 1510.70050 · doi:10.1016/j.cnsns.2015.06.006
[24] Yang, S-L, An identity of symmetry for the Bernoulli polynomials, Discrete Math., 308, 4, 550-554 (2007) · Zbl 1133.11015 · doi:10.1016/j.disc.2007.03.030
[25] Zhang, Z.; Wang, J., Bernoulli matrix and its algebraic properties, Discrete Appl. Math., 154, 11, 1622-1632 (2006) · Zbl 1129.11009 · doi:10.1016/j.dam.2006.01.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.