×

Taylor expansion of the inverse function with application to the Langevin function. (English) Zbl 07278885

Summary: A Taylor power series is a powerful mathematical tool, which can be used to express an inverse function especially if it is given in an implicit form. This is for example the case for the inverse Langevin function, which is an indispensable ingredient of full-network rubber models. In the present paper, we propose a simple recurrence procedure for calculating Taylor series coefficients of the inverse function. This procedure is based on the Taylor series expansion of the original function and results in a simple recurrence formula. This formula is further applied to the inverse Langevin function. The convergence radius of the resulting series is evaluated. Within this convergence radius the obtained approximation of the inverse Langevin function demonstrates better agreement with the exact solution in comparison to different Padé approximants.

MSC:

74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Bronstein, IN, Semendyayev, KA, Musiol, G, Muehlig, H. Handbook of Mathematics. Berlin, Heidelberg, New York: Springer, 2004. · Zbl 1049.00005 · doi:10.1007/978-3-662-05382-9
[2] Lagrange, JL . Nouvelle méthode pour résoudre les équations littérales par le moyen des séries. Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Berlin 1770; 24: 251-326.
[3] di Bruno, FF . Théorie des formes binaire. Brero succr. de P. Marietti, 1876. · JFM 08.0056.02
[4] Chernoff, H . A note on the inversion of power series. Mathematical Tables and Other Aids to Computation 1947; 2: 331-335. · doi:10.2307/2002234
[5] Traub, J . On the nth derivative of the inverse function. The American Mathematical Monthly 1962; 69: 904-907. · Zbl 0111.05803 · doi:10.2307/2311244
[6] Jabotinsky, E . Representation of functions by matrices. Application to Faber polynomials. Proc Amer Math Soc 1953; 4: 546-553. · Zbl 0052.30001 · doi:10.1090/S0002-9939-1953-0059359-0
[7] Ostrowski, A . Le developpement de Taylor de la fonction inverse. Comptes rendus de l’Académie des sciences Paris 1957; 244: 429-430. · Zbl 0077.07403
[8] Apostol, TM . Calculating higher derivatives of inverses. The American Mathematical Monthly 2000; 107: 738-741. · Zbl 1041.26001 · doi:10.2307/2695472
[9] Johnson, WP . Combinatorics of higher derivatives of inverses. The American Mathematical Monthly 2002; 109: 273-277. · Zbl 1047.26004 · doi:10.2307/2695356
[10] Kuhn, W, Grün, F. Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe. Colloid Polym Sci 1942; 101: 248-271.
[11] Wu, PD, van der Giessen, E. On improved 3-D non-Gaussian network models for rubber elasticity. Mech Res Comm 1992; 19: 427-433. · doi:10.1016/0093-6413(92)90021-2
[12] Wu, PD, van der Giessen, E. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J Mech Phys Solids 1993; 41: 427-456. · Zbl 0825.73103 · doi:10.1016/0022-5096(93)90043-F
[13] Gent, AN . A new constitutive relation for rubber. Rubber Chem Technol 1996; 69: 59-61. · doi:10.5254/1.3538357
[14] Horgan, CO, Saccomandi, GA. A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J Elast 2002; 68: 167-176. · Zbl 1073.74007 · doi:10.1023/A:1026029111723
[15] Dargazany, R, Itskov, M. A network evolution model for the anisotropic Mullins effect in carbon black filled rubbers. Int J Solids Struct 2009; 46: 2967-2977. · Zbl 1167.74332 · doi:10.1016/j.ijsolstr.2009.03.022
[16] Göktepe, S, Miehe, C. A micro-macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic Mullins-type damage. J Mech Phys Solids 2005; 53: 2259-2283. · Zbl 1120.74320 · doi:10.1016/j.jmps.2005.04.010
[17] Cohen, A . A Padé approximant to the inverse Langevin function. Rheologica Acta 1991; 30: 270-273. · doi:10.1007/BF00366640
[18] Puso, M . Mechanistic Constitutive Models for Rubber Elasticity and Viscoelasticity. PhD thesis, University of California, Davis, 2003. · doi:10.2172/15004918
[19] Treloar, LRG . The Physics of Rubber Elasticity. Oxford University Press, 1975.
[20] Itskov, M, Ehret, AE, Dargazany, R. A full-network rubber elasticity model based on analytical integration. Math Mech Solids 2010; 15: 655-671. · Zbl 1257.74020
[21] Treloar, LRG . The photoelastic properties of short chain molecular networks. Trans Faraday Soc 1954; 50: 881-896. · doi:10.1039/tf9545000881
[22] Liptaj, A . Higher order derivatives of the inverse function. http://www.scribd.com/doc/13699758, May 2007.
[23] Gradshteyn, I, Ryzhik, I. Table of Integrals, Series, and Products. Elsevier, 2007. · Zbl 1208.65001
[24] Mercer, GN, Roberts, AJ. A centre manifold description of contaminant dispersion in channels with varying flow properties. SIAM J Appl Math 1990; 50: 1547-1565. · Zbl 0711.76086 · doi:10.1137/0150091
[25] Steward, DR, Le Grand, P, Jankovic, I, Strack, ODL. Analytic formulation of Cauchy integrals for boundaries with curvilinear geometry. Proc Roy Soc Lond 2008; 464: 223-248. · Zbl 1132.45004 · doi:10.1098/rspa.2007.0138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.