×

Surfactant stabilized bubbles flowing in a Newtonian fluid. (English) Zbl 07273395

Summary: Bubbles suspended in a fluid cause the suspension to have different rheological properties than the base fluid. In general, the viscosity of the suspension increases as the volume fraction of the bubbles is increased. A current application, and motivation for this study, is in wellbore cements used for hydrocarbon extraction and carbon sequestration. In these settings, the gas bubbles are dispersed into the cement to reduce the density as well as improve the properties for specific conditions or wellbore issues. In this paper, we use Stokesian dynamics to numerically simulate the behavior of a large number of bubbles suspended in a Newtonian fluid. Going beyond prior work on simulating particles in suspension, we account for the nature of bubbles by allowing for slip on the bubble surface, the deflection on the bubble surface, and a bubble-bubble pairwise interaction that represents the surfactant physics; we do not account for bubble compressibility. We incorporate these interactions and simulate bubble suspensions of monodisperse size at several volume fractions. We find that the bubbles remain better dispersed compared with hard spherical particles that show a greater tendency to structure or cluster.

MSC:

74-XX Mechanics of deformable solids

Software:

OVITO
Full Text: DOI

References:

[1] Loeffler, N. Foamed cement: A second generation. In: Permian Basin Oil and Gas Recovery Conference.
[2] de Rozieres, J, Griffin, TJ. Foamed cements. In Nelson, EB (ed.) Well Cementing. Sugar Land, TX: Schlumberger Educational Services, 1990, pp. 14.1-14.19. · doi:10.1016/S0376-7361(09)70312-7
[3] Taylor, GI. The viscosity of a fluid containing small drops of another fluid. Proc R Soc Lond Ser A 1932; 138(834): 41-48. · JFM 58.0888.04 · doi:10.1098/rspa.1932.0169
[4] Massoudi, M. A note on the meaning of mixture viscosity using the classical continuum theories of mixtures. Int J Eng Sci 2008; 46(7): 677-689. · Zbl 1213.74044 · doi:10.1016/j.ijengsci.2008.01.008
[5] de Rozières, J, Ferrière, R. Foamed-cement characterization under downhole conditions and its impact on job design. SPE Production Eng 1991(August): 297-304.
[6] Tan, L, Ye, G, Schlangen, E, et al. Coupling of hydration and fracture models: Failure mechanisms in hydrating cement particle systems. In: Sih, GC, Nait-Abdelaziz, M, Vu-Khanh, T (eds) Particle and Continuum Aspects of Mesomechanics. New York: Wiley, 2007; pp. 563-571. · doi:10.1002/9780470610794.ch58
[7] Tan, LK, Schlangen, E, Ye, G. Simulation of failure in hydrating cement particles systems. Key Eng Mater 2007; 348: 737-740. · doi:10.4028/www.scientific.net/KEM.348-349.737
[8] American Petroleum Institute . Isolating Potential Flow Zones During Well Construction - API Standard 65 Part 2, 2010. Available at: http://www.shalegas.energy.gov/resources/65-2_e2.pdf?
[9] Rosenbaum, E, Massoudi, M, Dayal, K. Effects of polydispersity on structuring and rheology in flowing suspensions. J Appl Mech 2019; to appear. · doi:10.1115/1.4043094
[10] Brady, JF, Bossis, G. Stokesian dynamics. Annu Rev Fluid Mech 1988; 20(1): 111-157. · doi:10.1146/annurev.fl.20.010188.000551
[11] Bybee, MD. Hydrodynamic Simulations of Colloidal Gels: Microstructure, Dynamics, and Rheology. PhD Thesis, University of Illinois at Urbana-Champaign, 2009.
[12] Kumar, A. Microscale Dynamics in Suspensions of Non-Spherical Particles. PhD Thesis, University of Illinois at Urbana-Champaign, 2010.
[13] Kumar, A, Higdon, JJL. Origins of the anomalous stress behavior in charged colloidal suspensions under shear. Phys Rev E Statist Nonlin Soft Matter Phys 2010; 82(September): 1-7. · doi:10.1103/PhysRevE.82.051401
[14] Tabakova, SS, Danov, KD. Effect of disjoining pressure on the drainage and relaxation dynamics of liquid films with mobile interfaces. J Colloid Interface Sci 2009; 336(1): 273-284. · doi:10.1016/j.jcis.2009.03.084
[15] Kutchko, B, Crandall, D, Gill, M, et al. Computed Tomography and Statistical Analysis of Bubble Size Distributions in Atmospheric-Generated Foamed Cement. Technical Report, August, 2013.
[16] Dalton, LE, Brown, S, Moore, J, et al. Evolution using CT scanning: Insights from elevated-pressure generation. SPE Drilling & Completion 2019; 34(1): SPE-194007-PA. · doi:10.2118/194007-PA
[17] Kutchko, B, Crandall, D, Moore, J, et al. Field-generated foamed cement: Initial collection, computed tomography, and analysis. Technical report, US Department of Energy, National Energy Technology Laboratory, 2015.
[18] Pugh, RJ. Foaming, foam films, antifoaming and defoaming. Adv Colloid Interface Sci 1996; 64(95): 67-142. · doi:10.1016/0001-8686(95)00280-4
[19] Roussel, N. Steady and transient flow behaviour of fresh cement pastes. Cement Concrete Res 2005; 35: 1656-1664. · doi:10.1016/j.cemconres.2004.08.001
[20] Guillot, D. Rheology of well cement slurries. Dev Petrol Sci 1990; 28(C): 4-1-4-37. · doi:10.1016/S0376-7361(09)70302-4
[21] Beltempo, A, Zingales, M, Bursi, OS, et al. A fractional-order model for aging materials: An application to concrete. Int J Solids Struct 2018; 138: 13-23. · doi:10.1016/j.ijsolstr.2017.12.024
[22] Gaudron, R, Warnez, M, Johnsen, E. Bubble dynamics in a viscoelastic medium with nonlinear elasticity. J Fluid Mech 2015; 766: 54-75. · doi:10.1017/jfm.2015.7
[23] Kim, S, Karrila, SJ. Microhydrodynamics: Principles and Selected Applications. 2nd ed. Mineola, NY: Dover Publications, Inc., 2005.
[24] Sangani, A, Acrivos, A. The effective conductivity of a periodic array of spheres. Proc R Soc Lond A 1983; 386(1791): 263-275. · doi:10.1098/rspa.1983.0036
[25] James, RD, Müller, S. Internal variables and fine-scale oscillations in micromagnetics. Continuum Mech Thermodyn 1994; 6(4): 291-336. · Zbl 0814.73054 · doi:10.1007/BF01140633
[26] Xiao, Y. The Influence of Oxygen Vacancies on Domain Patterns in Ferroelectric Perovskites. PhD Thesis, California Institute of Technology, 2005.
[27] Marshall, J, Dayal, K. Atomistic-to-continuum multiscale modeling with long-range electrostatic interactions in ionic solids. J Mech Phys Solids 2014; 62: 137-162. · Zbl 1323.74020 · doi:10.1016/j.jmps.2013.09.025
[28] Bossis, G, Brady, JF. Dynamic simulations of sheared suspensions. {I.} General method. J Chem Phys 1984; 80(10): 5141-5154. · doi:10.1063/1.446585
[29] Ball, RC, Melrose, JR. A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and Brownian forces. Physica A Stat Mech Applicat 1997; 247(1-4): 444-472. · doi:10.1016/S0378-4371(97)00412-3
[30] Jeffrey, DJ, Onishi, Y. Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J Fluid Mech 1984; 139(1): 261. · Zbl 0545.76037 · doi:10.1017/S0022112084000355
[31] Bechinger, C, Sciortino, F, Ziherl, P. Physics of Complex Colloids. IOS Press, 2013.
[32] Davis, RH, Schonberg, JA, Rallison, JM. The lubrication force between two viscous drops. Phys Fluids A Fluid Dyn 1989; 1: 77. · Zbl 0656.76085 · doi:10.1063/1.857525
[33] Rognon, PG, Einav, I, Gay, C. Internal relaxation time in immersed particulate materials. Phys Rev E 2010; 81(6): 1-9. · doi:10.1103/PhysRevE.81.061304
[34] Rognon, PG, Gay, C. Soft dynamics simulation. 1. Normal approach of two deformable particles in a viscous fluid and optimal-approach strategy. Eur Phys J E 2008; 27: 253-260. · doi:10.1140/epje/i2008-10378-3
[35] Rognon, PG, Gay, C. Soft dynamics simulation. 2. Elastic spheres undergoing a T 1 process in a viscous fluid. Eur Phys J E 2009; 30: 291-301. · doi:10.1140/epje/i2009-10528-1
[36] Rognon, PG, Einav, I, Gay, C. Flowing resistance and dilatancy of dense suspensions: lubrication and repulsion. J Fluid Mech 2011; 689: 75-96. · Zbl 1241.76403 · doi:10.1017/jfm.2011.397
[37] Sandia National Laboratories . LAMMPS Users Manual. Sandia National Laboratories, 2003. http://lammps.sandia.gov.
[38] Plimpton, S. fast parallel algorithms for short-range molecular dynamics. J Computat Phys 1995; 117: 1-19. · Zbl 0830.65120 · doi:10.1006/jcph.1995.1039
[39] Lees, A, Edwards, S. The computer study of transport processes under extreme conditions. J Phys C Solid State Phys 1972; 5(15): 1921. · doi:10.1088/0022-3719/5/15/006
[40] Dayal, K, James, RD. Nonequilibrium molecular dynamics for bulk materials and nanostructures. J Mech Phys Solids 2010; 58(2): 145-163. · Zbl 1193.82038 · doi:10.1016/j.jmps.2009.10.008
[41] Tadmor, EB, Miller, RE. Modeling materials: continuum, atomistic and multiscale techniques. Cambridge: Cambridge University Press, 2011. · Zbl 1235.80001 · doi:10.1017/CBO9781139003582
[42] Frisch, GJ, Services, HE, Graham, WL. SPE 55649 assessment of foamed - cement slurries using conventional cement evaluation logs and improved interpretation methods. In: SPE Rocky Mountain Regional Meeting, 1999. · doi:10.2118/55649-MS
[43] Bour, D, Rickard, B. Application of foamed cement on Hawaiian geothermal well. Geothermal Resources Council Transactions 2000; 24.
[44] Batchelor, G, Green, J. The determination of the bulk stress in a suspension of spherical particles to order c 2. J Fluid Mech 1972; 56(3): 401-427. · Zbl 0246.76108 · doi:10.1017/S0022112072002435
[45] Lipton, R, Avellaneda, M. Darcy’s law for slow viscous flow past a stationary array of bubbles. Proc R Soc Edinburgh A Math 1990; 114(1-2): 71-79. · Zbl 0850.76778 · doi:10.1017/S0308210500024276
[46] Lipton, R, Vernescu, B. Homogenisation of two-phase emulsions. Proc R Soc Edinburgh A Math 1994; 124(6): 1119-1134. · Zbl 0817.76092 · doi:10.1017/S0308210500030146
[47] Gao, T, Hu, HH, Castañeda, PP. Shape dynamics and rheology of soft elastic particles in a shear flow. Phys Rev Lett 2012; 108(5): 058302. · doi:10.1103/PhysRevLett.108.058302
[48] Gao, T, Hu, HH, Castañeda, PP. Rheology of a suspension of elastic particles in a viscous shear flow. J Fluid Mech 2011; 687: 209-237. · Zbl 1241.76395 · doi:10.1017/jfm.2011.347
[49] Avazmohammadi, R, Castañeda, PP. Macroscopic rheological behavior of suspensions of soft solid particles in yield stress fluids. J Non-Newtonian Fluid Mech 2016; 234: 139-161. · doi:10.1016/j.jnnfm.2016.05.005
[50] Christoffersen, J, Mehrabadi, M, Nemat-Nasser, S. A micromechanical description of granular material behavior. J Appl Mech 1981; 48(2): 339-344. · Zbl 0471.73096 · doi:10.1115/1.3157619
[51] Massoudi, M. On the importance of material frame-indifference and lift forces in multiphase flows. Chem Eng Sci 2002; 57(17): 3687-3701. · doi:10.1016/S0009-2509(02)00237-3
[52] Massoudi, M. Constitutive relations for the interaction force in multicomponent particulate flows. Int J Non-Lin Mech 2003; 38(3): 313-336. · Zbl 1346.76200 · doi:10.1016/S0020-7462(01)00064-6
[53] Massoudi, M. A mixture theory formulation for hydraulic or pneumatic transport of solid particles. Int J Eng Sci 2010; 48(11): 1440-1461. · Zbl 1231.76019 · doi:10.1016/j.ijengsci.2010.08.005
[54] Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool Modelling Simul. Mater. Sci. Eng. 18 (2010); 015012 http://ovito.org/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.