×

Hypothesis testing for the dispersion parameter of the hyper-Poisson regression model. (English) Zbl 07193751

Summary: The Poisson distribution is widely used to deal with count data, however, it is unable to capture the dispersion problems. The hyper-Poisson distribution is a particular case of the extended Conway-Maxwell distribution which takes into account the dispersion phenomena of the count data. The main motivation to consider this model is the possibility to link the mean to the regressor variables in very natural way to solve testing problems. So, this paper will be focalized in the gradient statistics to detect dispersions and to compare with the classical likelihood ratio statistic. Two illustrative applications are considered.

MSC:

62-XX Statistics

Software:

R
Full Text: DOI

References:

[1] del Castillo J, Pérez-Casany M.Overdispersed and underdispersed Poisson generalizations. J Stat Plan Inference. 2005;134:486-500. doi: 10.1016/j.jspi.2004.04.019[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1121.62015
[2] Consul P, Famoye F.Generalized Poisson regression model. Commun Stat-Theory Methods. 1992;21:89-109. doi: 10.1080/03610929208830766[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0800.62355
[3] Wang W, Famoye F.Modeling household fertility decisions with generalized Poisson regression. J Popul Econ. 1997;10:273-283. doi: 10.1007/s001480050043[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[4] Famoye F, Wang W.Censored generalized Poisson regression model. Comput Stat Data Anal. 2004;46:547-560. doi: 10.1016/j.csda.2003.08.007[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1429.62435
[5] Efron B.Double exponential families and their use in generalized linear regression. J Am Stat Assoc. 1986;81:709-721. doi: 10.1080/01621459.1986.10478327[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0611.62072
[6] Ridout MS, Besbeas P.An empirical model for underdispersed count data. Stat Model. 2004;4:77-89. doi: 10.1191/1471082X04st064oa[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1111.62017
[7] Conway RW, Maxwell WL.A queuing model with state dependent services rates. J Ind Eng. 1961;2:132-136. [Google Scholar]
[8] Bardwell GE, Crow EL.A two-parameter family of hyper-Poisson distributions. J Am Stat Assoc. 1964;305:133-141. doi: 10.1080/01621459.1964.10480706[Taylor & Francis Online], [Google Scholar] · Zbl 0137.13301
[9] Shmueli G, Minka TP, Kadane JB, Borle S, Boatwright P.A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution. J R Stat Soc Ser C. 2005;54:127-142. doi: 10.1111/j.1467-9876.2005.00474.x[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1490.62058
[10] Sellers KF, Shmueli G.A flexible regression model for count data. Ann Appl Stat. 2010;4:943-961. doi: 10.1214/09-AOAS306[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1194.62091
[11] Sellers KF, Shmueli G.The COM-Poisson model for count data: A survey of methods and applications. Appl Stoch Models Bus Ind. 2012;28:104-116. doi: 10.1002/asmb.918[Crossref], [Web of Science ®], [Google Scholar] · Zbl 06292434
[12] Sáez-Castillo AJ, Conde-Sánchez A.A hyper-Poisson regression model for overdispersed and underdispersed count data. Comput Stat Data Anal. 2013;61:148-157. doi: 10.1016/j.csda.2012.12.009[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1348.62188
[13] Francis RA, Geedipally SR, Guikema SD, Dhavala SS, Lord D, LaRocca S.Characterizing the performance of the Conway-Maxwell Poisson generalized linear model. Risk Anal.. 2012;32:167-183. doi: 10.1111/j.1539-6924.2011.01659.x[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[14] Rodrigues J, Prado SM, Balakrishnan N.Flexible M/G/1 queueing system with state dependent service rate. Oper Res Lett. 2016;44:383-389. doi: 10.1016/j.orl.2016.03.011[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1408.90091
[15] Terrell GR.The gradient statistic. Comput Sci Stat. 2002;34:206-215. [Google Scholar]
[16] Lemonte A. The gradient test: Another likelihood-based test. London: Academic Press; 2016. [Google Scholar] · Zbl 1338.62011
[17] Johnson NL, Kemp AW, Kotz S. Univariate discrete distribution. New Jersey: John Wiley; 2005. [Crossref], [Google Scholar] · Zbl 1092.62010
[18] Souza D, Cancho VG, Rodrigues J, Balakrishnan N.Bayesian cure rate models induced by frailty in survival analysis. Stat Methods Med Res. 2017;26:2011-2028. doi: 10.1177/0962280217708671[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[19] Sen PK, Singer JM. Large sample methods in statistics: an introduction with applications. New York: Chapman and Hall; 1993. [Crossref], [Google Scholar] · Zbl 0867.62003
[20] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes: The art of scientific computing 3rd ed. New York: Cambridge University Press; 2007. [Google Scholar] · Zbl 1132.65001
[21] R CoreTeam R. A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
[22] Lemonte AJ, Ferrari SLP.Testing hypotheses in the Birnbaum-Saunders distribution under type-II censored samples. Comput Stat Data Anal. 2011;55:2388-2399. doi: 10.1016/j.csda.2011.02.005[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1328.62558
[23] Cameron AC, Johansson P.Count data regression using series expansions: With applications. J Appl Econom. 1997;12:203-223. doi: 10.1002/(SICI)1099-1255(199705)12:3<203::AID-JAE446>3.0.CO;2-2[Crossref], [Web of Science ®], [Google Scholar]
[24] Paula GA. Modelos de regressão: com apoio computacional. São Paulo: IME-USP; 2004. [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.