×

\(p\)-adic Brownian motion as a limit of discrete time random walks. (English) Zbl 07068255

Summary: The \(p\)-adic diffusion equation is a pseudo differential equation that is formally analogous to the real diffusion equation. The fundamental solutions to pseudo differential equations that generalize the \(p\)-adic diffusion equation give rise to \(p\)-adic Brownian motions. We show that these stochastic processes are similar to real Brownian motion in that they arise as limits of discrete time random walks on grids. While similar to those in the real case, the random walks in the \(p\)-adic setting are necessarily non-local. The study of discrete time random walks that converge to Brownian motion provides intuition about Brownian motion that is important in applications and such intuition is now available in a non-Archimedean setting.

MSC:

47Bxx Special classes of linear operators
60Gxx Stochastic processes
Full Text: DOI

References:

[1] Albeverio, S., Karwowski, W.: A random walk on \[p\] p-adics—the generator and its spectrum. Stoch. Process. Appl. 53, 1-22 (1994) · Zbl 0810.60065 · doi:10.1016/0304-4149(94)90054-X
[2] Avetisov, V.A., Bikulov, A.Kh.: On the ultrametricity of the uctuation dynamic mobility of protein molecules. Proc. Steklov Inst. Math. 265(1), 75-81 (2009) · Zbl 1179.92007
[3] Avetisov, V.A., Bikulov, A.Kh., Kozyrev, S.V.: Application of \[p\] p-adic analysis to models of breaking of replica symmetry. J. Phys. A 32(50), 8785-8791 (1999) · Zbl 0957.82034
[4] Avetisov, V.A., Bikulov, A.Kh., Kozyrev, S.V.: Description of logarithmic relaxation by a model of a hierarchical random walk. Dokl. Akad. Nauk 368(2), 164-167 (1999) · Zbl 1037.60089
[5] Avetisov, V.A., Bikulov, A.Kh., Osipov, \[V.Al.: p\] p-adic description of characteristic relaxation in complex systems. J. Phys. A 36(15), 4239-4246 (2003) · Zbl 1049.82051
[6] Bakken, E., Weisbart, D.: Continuous time \[p\] p-adic random walks and their path integrals. J. Theor. Probab. 32, 781-805 (2018) · Zbl 1447.60007 · doi:10.1007/s10959-018-0831-3
[7] Bakken, E., Digernes, T., Weisbart, D.: Brownian motion and finite approximations of quantum systems over local fields. Rev. Math. Phys. 29(5), 1750016 (2017) · Zbl 1370.81068 · doi:10.1142/S0129055X17500167
[8] Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995) · Zbl 0822.60002
[9] Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999) · Zbl 0944.60003 · doi:10.1002/9780470316962
[10] Chentsov, N.N.: Weak convergence of stochastic processes whose trajectories have no discontinuities of the second kind and the “heuristic” approach to the Kolmogorov-Smirnov tests. Theory Probab. Appl. 1(1), 140-144 (1956) · doi:10.1137/1101013
[11] Dragovich, B., Khrennikov, A.Yu., Kozyrev, S.V., Volovich, I.V.: On \[p\] p-adic mathematical physics. \[p\] p-Adic Numb. Ultr. Anal. Appl. 1(1), 1-17 (2009) · Zbl 1187.81004
[12] Digernes, T., Varadarajan, V.S., Weisbart, D.: Schrödinger operators on local fields: self-adjointness and path integral representations for propagators. Infinite Dimens. Anal. Quantum Probab. Related Top. 11(4), 495-512 (2008) · Zbl 1162.47038
[13] Hung, L., Lapidus, M.L.: Nonarchimedean Cantor set and string. J. Fixed Point Theory Appl. 3(1), 181-190 (2008) · Zbl 1234.28011 · doi:10.1007/s11784-008-0062-9
[14] Hung, L., Lapidus, M.L.: Self-similar \[p\] p-adic fractal strings and their complex dimensions. \[p\] p-Adic Numbers Ultrametr. Anal. Appl. 1(2), 167-180 (2009) · Zbl 1187.28014
[15] Ismagilov, R.S.: On the spectrum of the self adjoint operator in \[L^2(K)\] L2(K) where \[KK\] is a local field; an analog of the Feynman-Kac formula. Theor. Math. Phys. 89, 1024-1028 (1991) · Zbl 0780.47038 · doi:10.1007/BF01016802
[16] Khrennikov, A., Kozyrev, S., Zúñiga-Galindo, W.A.: Ultrametric Equations and Its Applications. Encyclopedia of Mathematics and Its Applications, 168th edn. Cambridge University Press, Cambridge (2018) · Zbl 1397.35350
[17] Kochubei, A.N.: Parabolic equations over the field of \[p\] p-adic numbers. Math. USSR Izvestiya 39, 1263-1280 (1992) · Zbl 0778.35001 · doi:10.1070/IM1992v039n03ABEH002247
[18] Varadarajan, V.S.: Path integrals for a class of \[p\] p-adic Schrödinger equations. Lett. Math. Phys. 39(2), 97-106 (1997) · Zbl 0868.47047 · doi:10.1023/A:1007364631796
[19] Vladimirov, V.S.: Generalized functions over the field of \[p\] p-adic numbers. Russ. Math. Surv. 43(5), 19-64 (1988) · Zbl 0678.46053 · doi:10.1070/RM1988v043n05ABEH001924
[20] Vladimirov, V.S.: On the spectrum of some pseudo-differential operators over \[p\] p-adic number field. Algebra Anal. 2, 107-124 (1990) · Zbl 0727.47042
[21] Vladimirov, V.S., Volovich, \[I.V.: p\] p-adic quantum mechanics. Commun. Math. Phys. 123(4), 659-676 (1989) · Zbl 0688.22004 · doi:10.1007/BF01218590
[22] Vladimirov, V.S., Volovich, \[I.V.: p\] p-adic Schrödinger-type equation. Lett. Math. Phys. 18(1), 43-53 (1989) · Zbl 0702.35219 · doi:10.1007/BF00397056
[23] Vladimirov, V.S., Volovich, I.V., Zelenov, E.l: \[p\] p-Adic Analysis and Mathematical Physics. World Scientific, Singapore (1994) · Zbl 0812.46076 · doi:10.1142/1581
[24] Zelenov, E.\[I.: p\] p-adic path integrals. J. Math. Phys. 32, 147-152 (1991) · Zbl 0729.58057 · doi:10.1063/1.529137
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.