×

Model order reduction approaches for infinite horizon optimal control problems via the HJB equation. (English) Zbl 06861108

Benner, Peter (ed.) et al., Model reduction of parametrized systems. Selected contributions based on the presentations at the MoRePaS conference, SISSA, Trieste, Italy, October 13–16, 2015. Cham: Springer. MS&A, Model. Simul. Appl. 17, 333-347 (2017).
Summary: We investigate feedback control for infinite horizon optimal control problems for partial differential equations. The method is based on the coupling between Hamilton-Jacobi-Bellman (HJB) equations and model reduction techniques. It is well-known that HJB equations suffer the so called curse of dimensionality and, therefore, a reduction of the dimension of the system is mandatory. In this report we focus on the infinite horizon optimal control problem with quadratic cost functionals. We compare several model reduction methods such as Proper Orthogonal Decomposition, Balanced Truncation and a new algebraic Riccati equation based approach. Finally, we present numerical examples and discuss several features of the different methods analyzing advantages and disadvantages of the reduction methods.
For the entire collection see [Zbl 1381.65001].

MSC:

65K10 Numerical optimization and variational techniques

References:

[1] Alla, A., Falcone, M.: An adaptive POD approximation method for the control of advection-diffusion equations. In: K. Kunisch, K. Bredies, C. Clason, G. von Winckel (eds.) Control and Optimization with PDE Constraints. International Series of Numerical Mathematics, vol. 164, pp. 1-17. Birkhäuser, Basel (2013) · Zbl 1272.49056
[2] Alla, A., Falcone, M., Kalise, D.: An efficient policy iteration algorithm for dynamic programming equations,. SIAM J. Sci. Comput. 37, 181-200 (2015) · Zbl 1327.65259 · doi:10.1137/130932284
[3] Alla, A., Falcone, M., Volkwein, S.: Error Analysis for POD approximations of infinite horizon problems via the dynamic programming principle. SIAM J. Control Optim. (to appear) · Zbl 1378.49025
[4] Alla, A., Falcone, M., Kalise, D.: A HJB-POD feedback synthesis approach for wave equation. Bull. Braz. Math. Soc. New Ser. 47, 51-64 (2016) · Zbl 1338.49063 · doi:10.1007/s00574-016-0121-6
[5] Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. Society for Industrial and Applied Mathematics, Philadelphia, PA (2005) · Zbl 1112.93002 · doi:10.1137/1.9780898718713
[6] Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Basel (1997) · Zbl 0890.49011 · doi:10.1007/978-0-8176-4755-1
[7] Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM-Mitteilungen 36, 32-52 (2013) · Zbl 1279.65044 · doi:10.1002/gamm.201310003
[8] Burns, J., Kang, S.: A control problem for Burgers’ equation with bounded input/output. Nonlinear Dyn. 2, 235-262 (1991) · doi:10.1007/BF00045296
[9] Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32, 2737-2764 (2010) · Zbl 1217.65169 · doi:10.1137/090766498
[10] Curtain, R.F., Zwart, H.J.: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer, New York (1995) · Zbl 0839.93001 · doi:10.1007/978-1-4612-4224-6
[11] Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34, 937-969 (2012) · Zbl 1259.65133 · doi:10.1137/10081157X
[12] Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi equations. Society for Industrial and Applied Mathematics, Philadelphia (2014) · Zbl 1335.65001
[13] Garcke, J., Kröner, A.: Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids. J. Sci. Comput. 70(1), 1-28 (2017) · Zbl 1434.49020 · doi:10.1007/s10915-016-0240-7
[14] Grüne, L., Panneck, J.: Nonlinear Model Predictive Control: Theory and Applications. Springer, New York (2011) · Zbl 1220.93001 · doi:10.1007/978-0-85729-501-9
[15] Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, Cham (2009) · Zbl 1167.49001
[16] Kalise, D., Kröner, A.: Reduced-order minimum time control of advection-reaction-diffusion systems via dynamic programming. In: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, pp. 1196-1202 (2014)
[17] Kunisch, K., Xie, L.: POD-based feedback control of Burgers equation by solving the evolutionary HJB equation. Comput. Math. Appl. 49, 1113-1126 (2005) · Zbl 1080.93012 · doi:10.1016/j.camwa.2004.07.022
[18] Kunisch, K., Volkwein, S., Xie, L.: HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 4, 701-722 (2004) · Zbl 1058.35061 · doi:10.1137/030600485
[19] Scherpen, J.: Balancing for nonlinear systems. Syst. Control Lett. 21, 143-153 (1993) · Zbl 0785.93042 · doi:10.1016/0167-6911(93)90117-O
[20] Schmidt, A., Haasdonk, B.: Reduced Basis Approximation of Large Scale Algebraic Riccati Equations. ESAIM: Control, optimisation and Calculus of Variations. EDP Sciences (2017)
[21] Sirovich, L.: Turbulence and the dynamics of coherent structures. Parts I-II. Q. Appl. Math. XVL, 561-590 (1987) · Zbl 0676.76047
[22] Studinger, A., Volkwein, S.: Numerical analysis of POD a-posteriori error estimation for optimal control. In: Kunisch, K., Bredies, K., Clason, C., von Winckel, G. (eds.) Control and Optimization with PDE Constraints. International Series of Numerical Mathematics, vol. 164, pp. 137-158. Birkhäuser, Basel (2013) · Zbl 1275.49050 · doi:10.1007/978-3-0348-0631-2_8
[23] Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Application. American Mathematical Society, Providence (2010) · Zbl 1195.49001 · doi:10.1090/gsm/112
[24] Volkwein, S.: Model reduction using proper orthogonal decomposition. Lecture Notes, University of Konstanz (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.