×

A class of history-dependent variational-hemivariational inequalities. (English) Zbl 06678723

Summary: We consider a new class of variational-hemivariational inequalities which arise in the study of quasistatic models of contact. The novelty lies in the special structure of these inequalities, since each inequality of the class involve unilateral constraints, a history-dependent operator and two nondifferentiable functionals, of which at least one is convex. We prove an existence and uniqueness result of the solution. The proof is based on arguments on elliptic variational-hemivariational inequalities obtained in our previous work [23], combined with a fixed point result obtained in [30]. Then, we prove a convergence result which shows the continuous dependence of the solution with respect to the data. Finally, we present a quasistatic frictionless problem for viscoelastic materials in which the contact is modeled with normal compliance and finite penetration and the elasticity operator is associated to a history-dependent Von Mises convex. We prove that the variational formulation of the problem cast in the abstract setting of history-dependent quasivariational inequalities, with a convenient choice of spaces and operators. Then we apply our general results in order to prove the unique weak solvability of the contact problem and its continuous dependence on the data.

MSC:

47J20 Variational and other types of inequalities involving nonlinear operators (general)
47J22 Variational and other types of inclusions
74M15 Contact in solid mechanics
74G25 Global existence of solutions for equilibrium problems in solid mechanics (MSC2010)
Full Text: DOI

References:

[1] Baiocchi C., Capelo A.: Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems. Wiley, Chichester (1984) · Zbl 0551.49007
[2] Brézis H.: Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble) 18, 115-175 (1968) · Zbl 0169.18602 · doi:10.5802/aif.280
[3] Brézis H.: Problèmes unilatéraux. J. Math. Pures Appl. 51, 1-168 (1972) · Zbl 0237.35001
[4] Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, Interscience, New York (1983) · Zbl 0582.49001
[5] Denkowski Z., Migórski S., Papageorgiou N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Academic/Plenum Publishers, Boston (2003) · Zbl 1040.46001 · doi:10.1007/978-1-4419-9156-0
[6] Denkowski Z., Migórski S., Papageorgiou N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic/Plenum Publishers, Boston (2003) · Zbl 1054.47001 · doi:10.1007/978-1-4419-9156-0
[7] Duvaut G., Lions J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976) · Zbl 0331.35002 · doi:10.1007/978-3-642-66165-5
[8] Eck C., Jarušek J., Krbeč M.: Unilateral Contact Problems: Variational Methods and Existence Theorems. Pure and Applied Mathematics, vol. 270. Chapman/CRC Press, New York (2005) · Zbl 1079.74003 · doi:10.1201/9781420027365
[9] Glowinski R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984) · Zbl 0536.65054 · doi:10.1007/978-3-662-12613-4
[10] Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland Publishing Company, Amsterdam, New York (1981) · Zbl 0463.65046
[11] Han W., Migórski S., Sofonea M.: A class of variational-hemivariational inequalities with applications to frictional contact problems. SIAM J. Math. Anal. 46, 3891-3912 (2015) · Zbl 1309.47068 · doi:10.1137/140963248
[12] Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Studies in Advanced Mathematics 30. Americal Mathematical Society, Providence, RI-International Press, Somerville, MA (2002) · Zbl 1013.74001
[13] Haslinger, J., Hlaváček, I., Nečas, J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, Vol. IV, pp. 313-485. North-Holland Publishing Company, Amsterdam (1996) · Zbl 0873.73079
[14] Haslinger J., Miettinen M., Panagiotopoulos P.D.: Finite Element Method for Hemivariational Inequalities. Methods and Applications. Kluwer Academic Publishers, Boston (1999) · Zbl 0949.65069 · doi:10.1007/978-1-4757-5233-5
[15] Hlaváček I., Haslinger J., Necǎs J., Lovíšek J.: Solution of Variational Inequalities in Mechanics. Springer, New York (1988) · Zbl 0654.73019 · doi:10.1007/978-1-4612-1048-1
[16] Kamran K., Barboteu M., Han W., Sofonea M.: Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics. Math. Modell. Numer. Anal. M2AN 48, 919-942 (2014) · Zbl 1292.65074 · doi:10.1051/m2an/2013127
[17] Kikuchi N., Oden J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988) · Zbl 0685.73002 · doi:10.1137/1.9781611970845
[18] Kinderlehrer D., Stampacchia G.: An Introduction to Variational Inequalities and their Applications. Classics in Applied Mathematics, vol. 31. SIAM, Philadelphia (2000) · Zbl 0988.49003 · doi:10.1137/1.9780898719451
[19] Martins, J.A.C., Monteiro Marques, M.D.P. (eds.) Contact Mechanics. Kluwer, Dordrecht (2002) · Zbl 1439.74230
[20] Migórski S., Ochal A., Sofonea M.: History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics. Nonlinear Anal. Real World Appl. 12, 3384-3396 (2011) · Zbl 1231.74065 · doi:10.1016/j.nonrwa.2011.06.002
[21] Migórski S., Ochal A., Sofonea M.: Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics, vol. 26. Springer, New York (2013) · Zbl 1262.49001
[22] Migórski S., Ochal A., Sofonea M.: History-dependent variational-hemivariational inequalities in contact mechanics. Nonlinear Anal. Real World Appl. 22, 604-618 (2015) · Zbl 1326.74101 · doi:10.1016/j.nonrwa.2014.09.021
[23] Migórski, S., Ochal, A., Sofonea, M.: A class of variational-hemivariational inequalities in reflexive Banach spaces. J. Elast. (2015) (submitted to) · Zbl 1368.47045
[24] Naniewicz Z., Panagiotopoulos P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker Inc, New York (1995) · Zbl 0968.49008
[25] Panagiotopoulos P.D.: Nonconvex problems of semipermeable media and related topics. ZAMM Z. Angew. Math. Mech. 65, 29-36 (1985) · Zbl 0574.73015 · doi:10.1002/zamm.19850650116
[26] Panagiotopoulos P.D.: Inequality Problems in Mechanics and Applications. Birkhäuser, Boston (1985) · Zbl 0579.73014 · doi:10.1007/978-1-4612-5152-1
[27] Panagiotopoulos P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993) · Zbl 0826.73002 · doi:10.1007/978-3-642-51677-1
[28] Shillor, M. (ed.): Recent advances in contact mechanics, Special issue of Math. Comput. Modell. 28(4-8) (1998)
[29] Shillor M., Sofonea M., Telega J.J.: Models and Analysis of Quasistatic Contact. Lect. Notes Phys., vol. 655. Springer, Berlin (2004) · Zbl 1069.74001 · doi:10.1007/b99799
[30] Sofonea M., Avramescu C., Matei A.: A fixed point result with applications in the study of viscoplastic frictionless contact problems. Commun. Pure Appl. Anal. 7, 645-658 (2008) · Zbl 1171.47047 · doi:10.3934/cpaa.2008.7.645
[31] Sofonea M., Han W., Migórski S.: Numerical analysis of history-dependent variational-hemivariational inequalities with applications to contact problems. Eur. J. Appl. Math. 26, 427-452 (2015) · Zbl 1439.74230 · doi:10.1017/S095679251500011X
[32] Sofonea M., Matei A.: History-dependent quasivariational inequalities arising in Contact Mechanics. Eur. J. Appl. Math. 22, 471-491 (2011) · Zbl 1226.49012 · doi:10.1017/S0956792511000192
[33] Sofonea M., Matei A.: Mathematical Models in Contact Mechanics, London Mathematical Society, Lecture Note Series 398. Cambridge University Press, Cambridge (2012) · Zbl 1255.49002 · doi:10.1017/CBO9781139104166
[34] Sofonea, M., Xiao, Y.: Fully history-dependent quasivariational inequalities in contact mechanics. Appl. Anal. doi:10.1080/00036811.2015.1093623. published online, October 7 (2015) · Zbl 1351.49011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.