×

Exponential stability of fractional-order uncertain systems with asynchronous switching and impulses. (English) Zbl 1543.93288

Summary: Different from the Mittag-Leffler stability or asymptotic stability, the exponential stability issue, which provides faster and explicit convergence rate, is studied in this paper for fractional-order uncertain systems with asynchronous switching and impulses, where the impulsive functions rely on not only switching modes but also impulsive time. Instead of using the inequality \(E_{\alpha}(t)\leq\frac{1}{\alpha}\exp\left(t^{\frac{1}{\alpha}}\right)\) \(\left(0<\alpha<1\right)\), by utilizing the theory of fractional-order differential equations, the methods of Lyapunov function and mathematical induction, some novel and less-conservative stability criteria are developed, respectively, for the case of switched stable subsystems or switched unstable subsystems. The obtained results build a tradeoff between impulsive function, impulsive interval, average dwell time and fractional order. In addition, our results with \(\alpha=1\) are also novel in contrast with the ones of integer-order switched impulsive systems. Finally, five numerical examples are given to show the effectiveness of theoretical results.
© 2024 John Wiley & Sons Ltd.

MSC:

93D23 Exponential stability
93C15 Control/observation systems governed by ordinary differential equations
34A08 Fractional ordinary differential equations
93C41 Control/observation systems with incomplete information
93C27 Impulsive control/observation systems
Full Text: DOI

References:

[1] SabatierJ, AgrawalO, MachadoJ. Advances in Fractional Calculus. Springer; 2007.
[2] PangG, LuL, KarniadakisG. fPINNs: fractional physics‐informed neural networks. SIAM J Sci Comput. 2019;41(4):A2603‐A2626. doi:10.1137/18M1229845 · Zbl 1420.35459
[3] GhanbariB, AtanganaA. A new application of fractional Atangana‐Baleanu derivatives: designing ABC‐fractional masks in image processing. Phys A. 2020;542:123516. doi:10.1016/j.physa.2019.123516 · Zbl 07527123
[4] RajchakitG, ChanthornP, KaewmesriP, SriramanR, LimC. Global Mittag‐Leffler stability and stabilization analysis of fractional‐order quaternion‐valued memristive neural networks. Mathematics. 2020;8(3):422. doi:10.3390/math8030422
[5] LiuP, NieX, LiangJ, CaoJ. Multiple Mittag‐Leffler stability of fractional‐order competitive neural networks with Gaussian activation functions. Neural Netw. 2018;108:452‐465. doi:10.1016/j.neunet.2018.09.005 · Zbl 1441.93282
[6] NieX, LiuP, LiangJ, CaoJ. Exact coexistence and locally asymptotic stability of multiple equilibria for fractional‐order delayed Hopfield neural networks with Gaussian activation function. Neural Netw. 2021;142:690‐700. doi:10.1016/j.neunet.2021.07.029 · Zbl 1526.93197
[7] WuZ, NieX, CaoB. Coexistence and local stability of multiple equilibrium points for fractional‐order state‐dependent switched competitive neural networks with time‐varying delays. Neural Netw. 2023;160:132‐147. doi:10.1016/j.neunet.2022.12.013 · Zbl 1526.34059
[8] RajchakitG, PratapA, RajaR, CaoJ, AlzabutJ, HuangC. Hybrid control scheme for projective lag synchronization of Riemann‐Liouville sense fractional order memristive BAM neural networks with mixed delays. Mathematics. 2019;7(8):759. doi:10.3390/math7080759
[9] CaoB, NieX. Event‐triggered adaptive neural networks control for fractional‐order nonstrict‐feedback nonlinear systems with unmodeled dynamics and input saturation. Neural Netw. 2021;142:288‐302. doi:10.1016/j.neunet.2021.05.014 · Zbl 1526.93145
[10] CaoB, NieX, CaoJ, DuanP. Practical finite‐time adaptive neural networks control for incommensurate fractional‐order nonlinear systems. Nonlinear Dyn. 2023;111(5):4375‐4393. doi:10.1007/s11071‐022‐08096‐w
[11] CaoB, NieX, CaoJ. Event‐triggered adaptive neural networks tracking control for incommensurate fractional‐order nonlinear systems with external disturbance. Neurocomputing. 2023;554:126586. doi:10.1016/j.neucom.2023.126586
[12] SongS, ZhangB, SongX, ZhangZ. Neuro‐fuzzy‐based adaptive dynamic surface control for fractional‐order nonlinear strict‐feedback systems with input constraint. IEEE Trans Syst Man Cybern Syst. 2021;51(6):3575‐3586. doi:10.1109/TSMC.2019.2933359
[13] FengT, WangY, LiuL, WuB. Observer‐based event‐triggered control for uncertain fractional‐order systems. J Frankl Inst‐Eng Appl Math. 2020;357(14):9423‐9441. doi:10.1016/j.jfranklin.2020.07.017 · Zbl 1448.93193
[14] JakovljevićB, PisanoA, RapaićM, UsaiE. On the sliding‐mode control of fractional‐order nonlinear uncertain dynamics. Int J Robust Nonlinear Control. 2016;26(4):782‐798. doi:10.1002/rnc.3337 · Zbl 1333.93071
[15] MegherbiO, HamicheH, DjennouneS, BettayebM. A new contribution for the impulsive synchronization of fractional‐order discrete‐time chaotic systems. Nonlinear Dyn. 2017;90:1519‐1533. doi:10.1007/s11071‐017‐3743‐3 · Zbl 1380.37072
[16] YangS, HuC, YuJ, JiangH. Exponential stability of fractional‐order impulsive control systems with applications in synchronization. IEEE Trans Cybern. 2020;50(7):3157‐3168. doi:10.1109/TCYB.2019.2906497
[17] RajchakitG, ChanthornP, NiezabitowskiM, RajaR, BaleanuD, PratapA. Impulsive effects on stability and passivity analysis of memristor‐based fractional‐order competitive neural networks. Neurocomputing. 2020;417:290‐301. doi:10.1016/j.neucom.2020.07.036
[18] YangT. Impulsive control. IEEE Trans Automat Contr. 1999;44(5):1081‐1083. doi:10.1109/9.763234 · Zbl 0954.49022
[19] RajchakitG, AgarwalP, RamalingamS. Stability Analysis of Neural Networks. Springer; 2021:1-404. doi:10.1007/978‐981‐16‐6534‐9 · Zbl 1485.93004
[20] ChenW, ZhengW, LuX. Impulsive stabilization of a class of singular systems with time‐delays. Automatica. 2017;83:28‐36. doi:10.1016/j.automatica.2017.05.008 · Zbl 1373.93268
[21] ChenW, LuX, ZongG. Impulsive stabilization for linear neutral‐type time‐delay systems. Int J Robust Nonlinear Control. 2018;28(17):5618‐5633. doi:10.1002/rnc.4343 · Zbl 1408.93112
[22] ChenH, ShiP, LimC. Synchronization control for neutral stochastic delay Markov networks via single pinning impulsive strategy. IEEE Trans Syst Man Cybern Syst. 2020;50(12):5406‐5419. doi:10.1109/TSMC.2018.2882836
[23] LuJ, JiangB, ZhengW. Potential impacts of delay on stability of impulsive control systems. IEEE Trans Automat Contr. 2022;67(10):5179‐5190. doi:10.1109/TAC.2021.3120672 · Zbl 1537.93610
[24] HanM, LamH, LiuF, TangY, HanB, ZhouH. Stabilization analysis and impulsive controller design for positive interval type‐2 polynomial fuzzy systems. IEEE Trans Fuzzy Syst. 2022;30(9):3952‐3966. doi:10.1109/TFUZZ.2021.3134753
[25] StamovaI. Global Mittag‐Leffler stability and synchronization of impulsive fractional‐order neural networks with time‐varying delays. Nonlinear Dyn. 2014;77:1251‐1260. doi:10.1007/s11071‐014‐1375‐4 · Zbl 1331.93102
[26] StamovT, StamovaI. Design of impulsive controllers and impulsive control strategy for the Mittag‐Leffler stability behavior of fractional gene regulatory networks. Neurocomputing. 2021;424:54‐62. doi:10.1016/j.neucom.2020.10.112
[27] ZhangT, ZhouJ, LiaoY. Exponentially stable periodic oscillation and Mittag‐Leffler stabilization for fractional‐order impulsive control neural networks with piecewise Caputo derivatives. IEEE Trans Cybern. 2022;52(9):9670‐9683. doi:10.1109/TCYB.2021.3054946
[28] HajiahmadiM, De SchutterB, HellendoornH. Design of stabilizing switching laws for mixed switched affine systems. IEEE Trans Automat Contr. 2016;61(6):1676‐1681. doi:10.1109/TAC.2015.2480216 · Zbl 1359.93212
[29] CuiD, WuY, XiangZ. Finite‐time adaptive fault‐tolerant tracking control for nonlinear switched systems with dynamic uncertainties. Int J Robust Nonlinear Control. 2021;31(8):2976‐2992. doi:10.1002/rnc.5429 · Zbl 1526.93224
[30] YangD, ZongG, ShiY, ShiP. Adaptive tracking control of hybrid switching Markovian systems with its applications. SIAM J Control Optim. 2023;61(2):434‐457. doi:10.1137/21M1442036 · Zbl 1515.93213
[31] YangD, ZongG, SuS‐F. H∞ tracking control of uncertain Markovian hybrid switching systems: a fuzzy switching dynamic adaptive control approach. IEEE Trans Cybern. 2022;52(5):3111‐3122. doi:10.1109/TCYB.2020.3025148
[32] ZongG, YangD, LamJ, SongX. Fault‐tolerant control of switched LPV systems: a bumpless transfer approach. IEEE‐ASME Trans Mechatron. 2022;27(3):1436‐1446. doi:10.1109/TMECH.2021.3096375
[33] ChenH, ZongG, GaoF, ShiY. Probabilistic event‐triggered policy for extended dissipative finite‐time control of MJSs under cyber‐attacks and actuator failures. IEEE Trans Automat Contr. 2023;68(12):7803‐7810. doi:10.1109/TAC.2023.3246429 · Zbl 07811003
[34] ChenH, ZongG, ZhaoX, GaoF, ShiK. Secure filter design of fuzzy switched CPSs with mismatched modes and application: a multidomain event‐triggered strategy. IEEE Trans Ind Inform. 2023;19(10):10034‐10044. doi:10.1109/TII.2022.3232768
[35] CuiD, AhnC, XiangZ. Fault‐tolerant fuzzy observer‐based fixed‐time tracking control for nonlinear switched systems. IEEE Trans Fuzzy Syst. 2023;31(12):4410‐4420. doi:10.1109/TFUZZ.2023.3284917
[36] YangX, LiX, LuJ, ChengZ. Synchronization of time‐delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control. IEEE Trans Cybern. 2020;50(9):4043‐4052. doi:10.1109/TCYB.2019.2938217
[37] ZhengQ, XuS, DuB. Asynchronous nonfragile guaranteed cost control for impulsive switched fuzzy systems with quantizations and its applications. IEEE Trans Fuzzy Syst. 2022;30(10):4471‐4483. doi:10.1109/TFUZZ.2022.3153144
[38] NingB, YuX, HanQ, CaoZ, WenG, ManZ. Settling time estimation in synchronization of impulsive networks with switching topologies. IEEE Trans Syst Man Cybern Syst. 2022;52(4):2386‐2397. doi:10.1109/TSMC.2021.3051139
[39] ZhengQ, XuS, DuB. Asynchronous resilent state estimation of switched fuzzy systems with multiple state impulsive jumps. IEEE Trans Cybern. 2023;53(12):7966‐7979. doi:10.1109/TCYB.2023.3253161
[40] LiX, YangD. Stabilization of impulsive switched systems: state‐dependent switching approach. IEEE Trans Syst Man Cybern Syst. 2024;54(2):1094‐1103. doi:10.1109/TSMC.2023.3323689
[41] HuT, ParkJ, LiuX, HeZ, ZhongS. Sampled‐data‐based event‐triggered synchronization strategy for fractional and impulsive complex networks with switching topologies and time‐varying delay. IEEE Trans Syst Man Cybern Syst. 2022;52(6):3568‐3580. doi:10.1109/TSMC.2021.3071811
[42] HeD, XuL. Exponential stability of impulsive fractional switched systems with time delays. IEEE Trans Circuits Syst II Express Briefs. 2021;68(6):1972‐1976. doi:10.1109/TCSII.2020.3037654
[43] NarayananG, AliM, AlsulamiH, StamovG, StamovaI, AhmadB. Impulsive security control for fractional‐order delayed multi‐agent systems with uncertain parameters and switching topology under DoS attack. Inform Sci. 2022;618:169‐190. doi:10.1016/j.ins.2022.10.123 · Zbl 1533.93323
[44] LoxtonR, TeoK, RehbockV, LingW. Optimal switching instants for a switched‐capacitor DC/DC power converter. Automatica. 2009;45(4):973‐980. doi:10.1016/j.automatica.2008.10.031 · Zbl 1162.49044
[45] ZhanT, MaS, LiW, PedryczW. Exponential stability of fractional‐order switched systems with mode‐dependent impulses and its application. IEEE Trans Cybern. 2022;52(11):11516‐11525. doi:10.1109/TCYB.2021.3084977
[46] ZhangL, YangY. Different impulsive effects on synchronization of fractional‐order memristive BAM neural networks. Nonlinear Dyn. 2018;93(2):233‐250. doi:10.1007/s11071‐018‐4188‐z · Zbl 1398.34025
[47] ZhangW, TangY, MiaoQ, DuW. Exponential synchronization of coupled switched neural networks with mode‐dependent impulsive effects. IEEE Trans Neural Netw Learn Syst. 2013;24(8):1316‐1326. doi:10.1109/TNNLS.2013.2257842
[48] YangM, WangY, XiaoJ, WangH. Robust synchronization of impulsively‐coupled complex switched networks with parametric uncertainties and time‐varying delays. Nonlinear Anal‐Real World Appl. 2010;11(4):3008‐3020. doi:10.1016/j.nonrwa.2009.10.021 · Zbl 1214.93055
[49] WangJ, LiangJ, QiuJ. Asynchronous
[( {l}_1 \]\) control for 2D switched positive systems with parametric uncertainties and impulses. Nonlinear Anal Hybrid Syst. 2020;37:100887. doi:10.1016/j.nahs.2020.100887 · Zbl 1478.93302
[50] PodlubnyI. Fractional Differential Equations. Academic Press; 1999. · Zbl 0924.34008
[51] LuJ, HoD, CaoJ. A unified synchronization criterion for impulsive dynamical networks. Automatica. 2010;46(7):1215‐1221. doi:10.1016/j.automatica.2010.04.005 · Zbl 1194.93090
[52] LiX, LiP, WangQ. Input/output‐to‐state stability of impulsive switched systems. Syst Control Lett. 2018;116:1‐7. doi:10.1016/j.sysconle.2018.04.001 · Zbl 1417.93279
[53] HeG, FangJ, LiZ. Synchronization of hybrid impulsive and switching dynamical networks with delayed impulses. Nonlinear Dyn. 2016;83:187‐199. doi:10.1007/s11071‐015‐2319‐3 · Zbl 1349.34203
[54] LiS, AhnC, ChadliM, XiangZ. Sampled‐data adaptive fuzzy control of switched large‐scale nonlinear delay systems. IEEE Trans Fuzzy Syst. 2021;30(4):1014‐1024. doi:10.1109/TFUZZ.2021.3052094
[55] YangH, JiangB. Stability of fractional‐order switched non‐linear systems. IET Control Theory Appl. 2016;10(8):965‐970. doi:10.1049/iet‐cta.2015.0989
[56] YuY, WangX, ZhongS, YangN, TashiN. Extended robust exponential stability of fuzzy switched memristive inertial neural networks with time‐varying delays on mode‐dependent destabilizing impulsive control protocol. IEEE Trans Neural Netw Learn Syst. 2021;32(1):308‐321. doi:10.1109/TNNLS.2020.2978542
[57] ZamaniI, ShafieeM, IbeasA. On singular hybrid switched and impulsive systems. Int J Robust Nonlinear Control. 2018;28(2):437‐465. doi:10.1002/rnc.3876 · Zbl 1390.93676
[58] ZhanT, MaS, LiuX. Synchronization of singular switched complex networks via impulsive control with all nonsynchronized subnetworks. Int J Robust Nonlinear Control. 2019;29(14):4872‐4887. doi:10.1002/rnc.4656 · Zbl 1426.93308
[59] XuH, TeoK. Exponential stability with
[( {L}_2 \]\)‐gain condition of nonlinear impulsive switched systems. IEEE Trans Automat Contr. 2010;55(10):2429‐2433. doi:10.1109/TAC.2010.2060173 · Zbl 1368.93614
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.