×

Eigenvalues of quantum Gelfand invariants. (English) Zbl 1543.81140

Summary: We consider the quantum Gelfand invariants which first appeared in a landmark paper by N. Yu. Reshetikhin et al. [Leningr. Math. J. 1, No. 1, 193–225 (1990; Zbl 0715.17015); translation from Algebra Anal. 1, No. 1, 178–206 (1989)]. We calculate the eigenvalues of the invariants acting in irreducible highest weight representations of the quantized enveloping algebra for \(\mathfrak{gl}_n\). The calculation is based on Liouville-type formulas relating two families of central elements in the quantum affine algebras of type \(A\).
©2024 American Institute of Physics

MSC:

81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
17B35 Universal enveloping (super)algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Citations:

Zbl 0715.17015

References:

[1] Baumann, P., On the center of quantized enveloping algebras, J. Algebra, 203, 244-260, 1998 · Zbl 0918.17006 · doi:10.1006/jabr.1997.7313
[2] Belliard, S.; Ragoucy, E., The nested Bethe ansatz for ‘all’ open spin chains with diagonal boundary conditions, J. Phys. A: Math. Theor., 42, 20, 205203, 2009 · Zbl 1165.82008 · doi:10.1088/1751-8113/42/20/205203
[3] Cherednik, I. V., A new interpretation of Gelfand-Tzetlin bases, Duke Math. J., 54, 563-577, 1987 · Zbl 0645.17006 · doi:10.1215/s0012-7094-87-05423-8
[4] Ding, J.; Frenkel, I. B., Isomorphism of two realizations of quantum affine algebra \(U_q( \hat{\mathfrak{g} \mathfrak{l}}(n))\), Commun. Math. Phys., 156, 277-300, 1993 · Zbl 0786.17008 · doi:10.1007/bf02098484
[5] Drinfeld, V. G., Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl., 32, 254-258, 1985 · Zbl 0588.17015
[6] Etingof, P. I., Central elements for quantum affine algebras and affine MacDonald’s operators, Math. Res. Lett., 2, 611-628, 1995 · Zbl 0964.17011 · doi:10.4310/mrl.1995.v2.n5.a7
[7] Frenkel, I. B.; Reshetikhin, N. Y., Quantum affine algebras and holonomic difference equations, Commun. Math. Phys., 146, 1-60, 1992 · Zbl 0760.17006 · doi:10.1007/bf02099206
[8] Gelfand, I. M., Center of the infinitesimal group ring, Mat. Sb., 26, 103-112, 1950 · Zbl 0035.30001
[9] Gould, M. D.; Zhang, R. B.; Bracken, A. J., Generalized Gel’fand invariants and characteristic identities for quantum groups, J. Math. Phys., 32, 2298-2303, 1991 · Zbl 0747.17020 · doi:10.1063/1.529152
[10] Gurevich, D. I.; Pyatov, P. N.; Saponov, P. A., Hecke symmetries and characteristic relations on reflection equation algebras, Lett. Math. Phys., 41, 255-264, 1997 · Zbl 0882.17011 · doi:10.1023/a:1007386006326
[11] Hopkins, M. J.; Molev, A. I., A q-analogue of the centralizer construction and skew representations of the quantum affine algebra, SIGMA, 2, 092, 2006 · Zbl 1138.81028 · doi:10.3842/sigma.2006.092
[12] Isaev, A.; Ogievetsky, O.; Pyatov, P., On quantum matrix algebras satisfying the Cayley-Hamilton-Newton identities, J. Phys. A: Math. Gen., 32, L115-L121, 1999 · Zbl 0929.17016 · doi:10.1088/0305-4470/32/9/002
[13] Jimbo, M., A q-difference analogue of \(\text{U}(\mathfrak{g})\) and the Yang-Baxter equation, Lett. Math. Phys., 10, 63-69, 1985 · Zbl 0587.17004 · doi:10.1007/bf00704588
[14] Jimbo, M., A q-analogue of \(U_q(\mathfrak{g}\mathfrak{l}(N+1))\), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys., 11, 247-252, 1986 · Zbl 0602.17005 · doi:10.1007/bf00400222
[15] Jing, N.; Liu, M.; Molev, A., Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: Type C, J. Math. Phys., 61, 3, 031701, 2020 · Zbl 1439.81062 · doi:10.1063/1.5133854
[16] Jing, N.; Liu, M.; Molev, A., Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: Types B and D, SIGMA, 16, 043, 2020 · Zbl 1495.17024 · doi:10.3842/sigma.2020.043
[17] Jing, N.; Liu, M.; Molev, A., Quantum Sugawara operators in type A
[18] Jordan, D.; White, N., The center of the reflection equation algebra via quantum minors, J. Algebra, 542, 308-342, 2020 · Zbl 1461.17018 · doi:10.1016/j.jalgebra.2019.08.038
[19] Kulish, P. P.; Sklyanin, E. K., Quantum spectral transform method: Recent developments, Integrable Quantum Field Theories. Lecture Notes in Physics Vol. 151, 61-119, 1982, Springer: Springer, Berlin · Zbl 0734.35071
[20] Molev, A., Yangians and Classical Lie Algebras. Mathematical Surveys and Monographs Vol. 143, 2007, American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1141.17001
[21] Molev, A., Sugawara Operators for Classical Lie Algebras. Mathematical Surveys and Monographs Vol. 229, 2018, American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1395.17001
[22] Nazarov, M. L., Quantum Berezinian and the classical Capelli identity, Lett. Math. Phys., 21, 123-131, 1991 · Zbl 0722.17004 · doi:10.1007/bf00401646
[23] Nazarov, M.; Tarasov, V., Yangians and Gelfand-Zetlin bases, Publ. Res. Inst. Math. Sci., 30, 459-478, 1994 · Zbl 0929.17009 · doi:10.2977/prims/1195165907
[24] Perelomov, A. M.; Popov, V. S., Casimir operators for semisimple Lie algebras, Izv. Akad. Nauk SSSR Ser. Mat., 32, 1368-1390, 1968 · Zbl 0185.07401
[25] Reshetikhin, N. Y., Quasitriangular Hopf algebras and invariants of links, Algebra Anal., 1, 2, 169-188, 1989
[26] Reshetikhin, N. Y.; Semenov-Tian-Shansky, M. A., Central extensions of quantum current groups, Lett. Math. Phys., 19, 133-142, 1990 · Zbl 0692.22011 · doi:10.1007/bf01045884
[27] Reshetikhin, N. Y.; Takhtadzhyan, L. A.; Faddeev, L. D., Quantization of Lie groups and Lie algebras, Algebra Anal., 1, 1, 178-206, 1989 · Zbl 0715.17015
[28] Tarasov, V. O., Cyclic monodromy matrices for sl(n) trigonometric R-matrices, Commun. Math. Phys., 158, 459-484, 1993 · Zbl 0804.17011 · doi:10.1007/BF02096799
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.