×

Wilton ripples with high-order resonances in weakly nonlinear models. (English) Zbl 1543.76015

The scientific problem addressed in this paper is the analysis of Wilton ripple resonances, particularly focusing on higher-order resonances that involve wavenumbers beyond the commonly studied triad resonance (\(N = 2\)). Traditional studies predominantly consider resonances between two harmonics (\(k = 1\) and \(k = 2\)), but this work extends the exploration to scenarios where the resonance occurs between \(k = 1\) and \(N\) harmonics for \(N\) greater than \(2\). The primary aim is to derive explicit formulas for the coefficients in the asymptotic series expansions associated with these higher-order resonances and to understand the behaviour and convergence of these solutions in weakly nonlinear models.
The methods employed involve asymptotic analysis of weakly nonlinear dispersive partial differential equations. The authors utilise the example of the Kawahara equation to illustrate the construction of the asymptotic solutions. The technique begins by expanding the solution and the wave speed correction in terms of a small amplitude parameter, \(\varepsilon\). The method involves deriving recursive formulas for the coefficients at each order of the asymptotic expansion, taking into account the specific characteristics of the linear operator associated with each model. This approach is generalized for different values of \(N\), providing a comprehensive framework to analyse higher-order resonances.
The main findings of the manuscript reveal that for higher-order resonances (\(N > 3\)), the amplitude of the resonant harmonics appears at an order of \(\varepsilon^{N-2}\), which is significantly smaller than the main wave amplitude. This indicates that higher-order resonances are less pronounced and harder to detect compared to lower-order resonances. Additionally, the study highlights the importance of the spectral gap and the behaviour of the linear operator at high frequencies in determining the convergence of the asymptotic series. It was observed that certain linear operators could lead to a small radius of convergence due to a small recurring divisor in the recursive formulas.
In conclusion, this research significantly advances the understanding of Wilton ripples in the context of higher-order resonances. The results provide critical insights into the asymptotic behaviour of solutions to weakly nonlinear dispersive partial differential equations, and the derived formulas and methodologies can be utilised in future studies to further explore the existence and stability of these resonances. The findings have important implications for the study of nonlinear wave interactions and contribute to the broader field of mathematical physics and fluid dynamics.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Wilton, JR, On ripples, Philos. Mag., 29, 173, 1915 · JFM 45.1090.02 · doi:10.1080/14786440508635350
[2] Akers, B.; Gao, W., Wilton ripples in weakly nonlinear model equations, Commun. Math. Sci., 10, 3, 1015-1024, 2012 · Zbl 1269.76023 · doi:10.4310/CMS.2012.v10.n3.a15
[3] Lamb, H., Hydrodynamics, 1879, Cambridge: Cambridge University Press, Cambridge
[4] McGoldrick, LF, On Wilton’s ripples: a special case of resonant interactions, J. Fluid Mech., 42, 1, 193-200, 1970 · Zbl 0208.56403 · doi:10.1017/S0022112070001179
[5] Haupt, SE; Boyd, JP, Modeling nonlinear resonance: a modification to the Stokes’ perturbation expansion, Wave Motion, 10, 1, 83-98, 1988 · Zbl 0628.76023 · doi:10.1016/0165-2125(88)90008-X
[6] Kamesvara Rav, J.C.: On ripples of finite amplitude. In: Proceedings of the Indian Association for the Cultivation of Science, Cambridge University Press, United Kingdom vol. 6, pp. 175-193 (1920)
[7] Vanden-Broeck, J-M, Gravity-Capillary Free-Surface Flows, 2010, Cambridge: Cambridge University Press, Cambridge · Zbl 1202.76002 · doi:10.1017/CBO9780511730276
[8] Vanden-Broeck, J-M, Wilton ripples generated by a moving pressure disturbance, J. Fluid Mech., 451, 193-201, 2002 · Zbl 1005.76006 · doi:10.1017/S0022112001006929
[9] Christodoulides, P.; Dias, F., Resonant capillary-gravity interfacial waves, J. Fluid Mech., 265, 303-343, 1994 · Zbl 0806.76014 · doi:10.1017/S0022112094000856
[10] Amundsen, DE; Benney, DJ, Resonances in dispersive wave systems, Stud. Appl. Math., 105, 3, 277-300, 2000 · Zbl 1136.76322 · doi:10.1111/1467-9590.00152
[11] Trichtchenko, O.; Deconinck, B.; Wilkening, J., The instability of Wilton ripples, Wave Motion, 66, 147-155, 2016 · Zbl 1467.76018 · doi:10.1016/j.wavemoti.2016.06.004
[12] McGoldrick, LF, An experiment on second-order capillary gravity resonant wave interactions, J. Fluid Mech., 40, 251-271, 1970 · doi:10.1017/S0022112070000162
[13] Henderson, DM; Hammack, JL, Experiments on ripple instabilities. Part 1. Resonant triads, J. Fluid Mech., 184, 15-41, 1987 · doi:10.1017/S0022112087002799
[14] Perlin, M.; Henderson, D.; Hammack, J., Experiments on ripple instabilities. Part 2. Selective amplification of resonant triads, J. Fluid Mech., 219, 51-80, 1990 · doi:10.1017/S0022112090002865
[15] Reeder, J.; Shinbrot, M., On Wilton ripples II: rigorous results, Arch. Ration. Mech. Anal., 77, 321-347, 1981 · Zbl 0567.76027 · doi:10.1007/BF00280641
[16] Akers, B.; Nicholls, DP, Wilton ripples in weakly nonlinear dispersive models of water waves: existence and analyticity of solution branches, Water Waves, 3, 1, 25-47, 2021 · Zbl 1481.76041 · doi:10.1007/s42286-020-00034-w
[17] Akers, B., Nicholls, D.P.: Wilton Ripples in weakly nonlinear models of water waves: existence and computation. Water Waves 3(3), 491-511 (2021) · Zbl 1490.76032
[18] Toland, JF; Jones, MCW, The bifurcation and secondary bifurcation of capillary-gravity waves, Proc. R. Soc. Lond. A Math. Phys. Sci., 399, 1817, 391-417, 1985 · Zbl 0575.76023
[19] Akers, B.; Ambrose, DM; Sulon, DW, Periodic travelling interfacial hydroelastic waves with or without mass II: multiple bifurcations and ripples, Eur. J. Appl. Math., 30, 4, 756-790, 2019 · Zbl 1427.76036 · doi:10.1017/S0956792518000396
[20] Ehrnström, M.; Johnson, MA; Maehlen, OIH; Remonato, F., On the bifurcation diagram of the capillary-gravity Whitham equation, Water Waves, 1, 2, 275-313, 2019 · Zbl 1446.35124 · doi:10.1007/s42286-019-00019-4
[21] Vanden-Broeck, J-M; Părău, EI, Two-dimensional generalized solitary waves and periodic waves under an ice sheet, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 369, 1947, 2957-2972, 2011 · Zbl 1228.86002 · doi:10.1098/rsta.2011.0108
[22] Akers, B., High-order perturbation of surfaces short course: stability of travelling water waves, Lect. Theory Water Waves, 426, 51, 2016 · Zbl 1360.76044 · doi:10.1017/CBO9781316411155.005
[23] Akers, B., High-order perturbation of surfaces short course: traveling water waves, Lect. Theory Water Waves, 426, 19-31, 2016 · Zbl 1360.76043 · doi:10.1017/CBO9781316411155.003
[24] Akers, B., Modulational instabilities of periodic traveling waves in deep water, Phys. D: Nonlinear Phenom., 300, 26-33, 2015 · Zbl 1364.76025 · doi:10.1016/j.physd.2015.02.005
[25] Akers, B.; Nicholls, DP, Spectral stability of deep two-dimensional gravity water waves: repeated eigenvalues, SIAM J. Appl. Math., 72, 689-711, 2012 · Zbl 1322.76029 · doi:10.1137/110832446
[26] Akers, B.; Nicholls, DP, Spectral stability of deep two-dimensional gravity capillary water waves, Stud. Appl. Math., 130, 81-107, 2013 · Zbl 1326.76016 · doi:10.1111/j.1467-9590.2012.00574.x
[27] Creedon, R.; Deconinck, B.; Trichtchenko, O., High-frequency instabilities of a Boussinesq-Whitham system: a perturbative approach, Fluids, 6, 4, 136, 2021 · doi:10.3390/fluids6040136
[28] Creedon, R.; Deconinck, B.; Trichtchenko, O., High-frequency instabilities of the Kawahara equation: a perturbative approach, SIAM J. Appl. Dyn. Syst., 20, 3, 1571-1595, 2021 · Zbl 1478.35072 · doi:10.1137/21M1393376
[29] Creedon, RP; Deconinck, B.; Trichtchenko, O., High-frequency instabilities of Stokes waves, J. Fluid Mech., 937, A24, 2022 · Zbl 07482844 · doi:10.1017/jfm.2021.1119
[30] Wilkening, J.; Zhao, X., Spatially quasi-periodic water waves of infinite depth, J. Nonlinear Sci., 31, 3, 52, 2021 · Zbl 1462.76030 · doi:10.1007/s00332-021-09689-2
[31] Griffel, D.H.: Applied Functional Analysis. Courier Corporation (2002) · Zbl 1116.46001
[32] Drazin, PG, Nonlinear Systems, 1992, Cambridge: Cambridge University Press, Cambridge · Zbl 0753.34001 · doi:10.1017/CBO9781139172455
[33] Champneys, AR; Vanden-Broeck, J-M; Lord, GJ, Do true elevation gravity-capillary solitary waves exist? a numerical investigation, Int. J. Fluid Mech., 454, 403-417, 2002 · Zbl 1023.76011 · doi:10.1017/S0022112001007200
[34] Gao, T.; Vanden-Broeck, J-M, Numerical studies of two-dimensional hydroelastic periodic and generalised solitary waves, Phys. Fluids, 26, 8, 1-14, 2014 · Zbl 1323.76110 · doi:10.1063/1.4893677
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.