×

Spatially localized nonlinear magnetoelastic waves in an electrically conductive micropolar medium. (English) Zbl 1543.74058

The authors consider a nonlinear magnetoelastic model. In this setting, one-dimensional nonlinear magnetoelastic shear-rotation wave equation is derived and studied. Dropping out nonlinear terms of smaller magnitude, a simplified nonlinear equation is derived. The solutions are studied under traveling wave assumption. The stationary waves constituting subsonic and supersonic solitons are derived and graphically presented. A qualitative behavior of such solitons is pointed out.

MSC:

74J30 Nonlinear waves in solid mechanics
74J35 Solitary waves in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74A35 Polar materials
Full Text: DOI

References:

[1] Zhilin, P.A.: Topical Problems of Mechanics. Collection of articles on the materials of reports at the annual international summer school‐conference “Actual problems of mechanics”, vol 1. Published by the IPME RAS, St. Petersburg (2006)
[2] Ivanova, E.A.: Modeling of electrodynamic processes by means of mechanical analogies. Z. Angew. Math. Mech. 101(4), e202000076 (2021) https://doi.org/10.1002/zamm.202000076 · Zbl 07809801 · doi:10.1002/zamm.202000076
[3] Müller, W.H., Vilchevskaya, E.N., Eremeyev, V.A.: Electrodynamics from the viewpoint of modern continuum theory - A review. Z. Angew. Math. Mech.e202200179 (2022) https://doi.org/10.1002/zamm.202200179 · Zbl 07824588 · doi:10.1002/zamm.202200179
[4] Cosserat, E.: et F. Theorie des Corps Deformables. Librairie Scientifique A. Hermann et Fils, Paris (1909)
[5] Nowacki, W.: Electromagnetic effects in solids. PWN, Warszawa (1983)
[6] Maugin, G.: Continuum mechanics of electromagnetic solids. Elsevier science publishers B. V., Amsterdam, North Holland (1988) · Zbl 0652.73002
[7] Kaliski, S., Cz, R., Sobczyk, K.: Vibration and Waves. Elsevier, Amsterdam (1992) · Zbl 0788.73003
[8] Collins, R. (ed.), Dover, W.D. (ed.), Bowler, J.R. (ed.), MiyaK. (ed.) (eds.): Nondestructive testing of materials /studies in applied electromagneties and mechanics, vol. 8. IOS Press, Amsterdam, Berlin, Washington, DC (1995)
[9] Uglov, A.A. (ed.) (ed.): Physical‐chemical methods of material processing by concentrated energy fluxes. Nauka, Moscow (1989) (in Russ.)
[10] Güven, U.: Internal inertia gradient effect on two mode magneto‐elastic wave propagation. Z. Angew. Math. Mech.101(10), e202000274 (2021) https://doi.org/10.1002/zamm.202000274 · Zbl 07813174 · doi:10.1002/zamm.202000274
[11] Pham, T.D., Tarlakovskii, D.V., Paimushin, V.N.: Non‐stationary bending of a finite electromagnetoelastic rod. Z. Angew. Math. Mech. 101(9), e202000316 (2021) https://doi.org/10.1002/zamm.202000316 · Zbl 07813152 · doi:10.1002/zamm.202000316
[12] Vestyak, V.A., Gachkevich, A.R., Musiy, R.S., Tarlakovskiy, D.V., Fedotenkov, G.V.: Two‐dimensional unsteady waves in electromagnetoelastic bodies. Fizmatlit, Moscow (2019) (in Russ.)
[13] Kaliski, S.: Thermo‐magneto‐microelasticity. Bull. de l’Academie Polonaise des Sciences. 16(1), 7-13 (1968)
[14] Kaliski, S., Nowacki, W.: Wave‐type equation of thermo‐magneto‐microelasticity. Bull. De L’Academie Polonaise des Sciences. 17(4), 155-159 (1970) · Zbl 0202.25602
[15] Sargsyan, S.H., Sargsyan, L.S.: Magnetoelasticity of thin shells and plates based on the asymmetrical theory of elasticity. In: Maugin, G.A. (ed.), Metrikine, A.V. (ed.) (eds.) Mechanics of generalized continua: On hundred years after the cosserats. Advances in mathematics and mechanics, vol. 21, pp. 325-337. Springer, Berlin (2010) · Zbl 1396.74052
[16] Singh, R., Kumar, V.: Thermo‐mechanical deformation in magneto micropolar thermoelastic medium with modified fourier and Ohm’s law. International Journal of Applied Mechanics and Engineering. 16(1), 83-105 (2011)
[17] Kabychenkov, A.F., Lisovskii, F.V., Mansvetova, E.G., Arzamastseva, G.V.: Transformation of hybrid transverse elastic waves in nonuniform micropolar media. Acoust. Phys.64(6), 673-677 (2018)
[18] Kabychenkov, A.F., Lisovskii, F.V.: The nonlocal elastomagnetoelectrostatics of disordered micropolar media. J. Exp. Theor. Phys.123(2), 254-264 (2016)
[19] Xu, H., Hu, Y., Hao, Y.: Magnetoelastic nonlinear free vibration of an annular plate under a nonuniform magnetic field of the long straight current‐carrying wire. Z. Angew. Math. Mech. 102(6), e202000299 (2022). https://doi.org/10.1002/zamm.202000299 · Zbl 1539.74158 · doi:10.1002/zamm.202000299
[20] Ghaleb, A.F., Ayad, M.M.: Nonlinear waves in thermo‐magnetoelasticity. I. Basic equations. II. Wave generation in a perfect electric conductor. Int. J. Appl. Electromagn. Mech.9(4), 339-357,359-379 (1998)
[21] Landau, L.D., Lifshitz, E.M.: Course of theoretical physics. Theory of elasticity, vol 7. 3rd edition. Elsevier, Oxford, UK (1984)
[22] Erofeev, V.I., Mal’khanov, A.O.: Magnetic field effect on strain wave localization. J. Mach. Manuf. Reliab. 39(1), 78-82 (2010)
[23] Erofeev, V.I., Malkhanov, A.O., Zemlyanukhin, A.I., Catson, V.M.: Nonlinear magnetoelastic waves in a plate. In: Altenbach, H. (ed.), Eremeyev, V.A. (ed.) (eds.) Shell‐like structures. Non‐classical theories and applications, pp.125‐134. Springer, Berlin, Heidelberg (2011) (Advanced Structured Materials, vol. 15)
[24] Bagdoev, A.G., Erofeyev, V.I., Shekoyan, A.V.: Wave dynamics of generalized continua. Springer, Berlin‐Heidelberg (2016) (Advanced Structured Matherials, vol. 24) · Zbl 1349.74001
[25] Erofeev, V.I., Mal’khanov, A.O.: Localized strain waves in a nonlinearly elastic conducting medium interacting with a magnetic field. Mech. Solids.52(2), 224-231 (2017)
[26] Erofeev, V.I., Leontieva, A.V., Malkhanov, A.O.: Stationary longitudinal thermoelastic waves and the waves of the rotation type in the non‐linear micropolar medium. Z. Angew. Math. Mech.97(9), 1064-1071 (2017) · Zbl 07775400
[27] Nowacki, W.: Theory of asymmetric elasticity. Pergamon Press, Oxford (1988)
[28] Landau, L.D., Lifshits, E.M.: Course of theoretical physics. Electrodymamics of continuous, vol 8. Butterworth‐Heinemann, Oxford (1996)
[29] Erofeev, V.I., Pavlov, I.S.: Structural modelling of metamaterials. Springer Nature Switzerland AG, (2021) (Advanced Structured Materials, vol. 144)
[30] Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. Arch. Mech.33(5), 717-737 (1981) · Zbl 0526.73004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.