×

The quaternion-based spatial-coordinate and orientation-frame alignment problems. (English) Zbl 1543.65024

Summary: The general problem of finding a global rotation that transforms a given set of spatial coordinates and/or orientation frames (the “test” data) into the best possible alignment with a corresponding set (the “reference” data) is reviewed. For 3D point data, this “orthogonal Procrustes problem” is often phrased in terms of minimizing a root-mean-square deviation (RMSD) corresponding to a Euclidean distance measure relating the two sets of matched coordinates. This article focuses on quaternion eigensystem methods that have been exploited to solve this problem for at least five decades in several different bodies of scientific literature, where they were discovered independently. While numerical methods for the eigenvalue solutions dominate much of this literature, it has long been realized that the quaternion-based RMSD optimization problem can also be solved using exact algebraic expressions based on the form of the quartic equation solution published by Cardano in 1545; focusing on these exact solutions exposes the structure of the entire eigensystem for the traditional 3D spatial-alignment problem. The structure of the less-studied orientation-data context is then explored, investigating how quaternion methods can be extended to solve the corresponding 3D quaternion orientation-frame alignment (QFA) problem, noting the interesting equivalence of this problem to the rotation-averaging problem, which also has been the subject of independent literature threads. The article concludes with a brief discussion of the combined 3D translation-orientation data alignment problem. Appendices are devoted to a tutorial on quaternion frames, a related quaternion technique for extracting quaternions from rotation matrices and a review of quaternion rotation-averaging methods relevant to the orientation-frame alignment problem. The supporting information covers novel extensions of quaternion methods to the 4D Euclidean spatial-coordinate alignment and 4D orientation-frame alignment problems, some miscellaneous topics, and additional details of the quartic algebraic eigenvalue problem.
© 2020 Andrew J. Hanson. Acta Crystallographica Section A. Foundations and Advances published by IUCr Journals.

MSC:

65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
51N05 Descriptive geometry

References:

[1] Abramowitz, M. & Stegun, I. (1970).Handbook of Mathematical Functions, pp. 17-18. New York: Dover Publications Inc.
[2] Arun, K. S., Huang, T. S. & Blostein, S. D. (1987).IEEE Trans. Pattern Anal. Mach. Intell.9, 698-700.
[3] Bar-Itzhack, I. Y. (2000).J. Guid. Control Dyn.23, 1085-1087.
[4] Bell, J. (2008). arXiv:0806.1927v1 [math.HO].
[5] Bergevin, R., Soucy, M., Gagnon, H. & Laurendeau, D. (1996).IEEE Trans. Pattern Anal. Mach. Intell.18, 540-547.
[6] Besl, P. J. & McKay, N. D. (1992).IEEE Trans. Pattern Anal. Mach. Intell.14, 239-256.
[7] Boyer, C. B. & Merzbach, U. C. (1991).A History of Mathematics, 2nd ed. New York: Wiley. · Zbl 1321.01001
[8] Brown, J. & Worsey, A. (1992).ESAIM: M2AN,26, 37-49. · Zbl 0748.65014
[9] Buchholz, S. & Sommer, G. (2005).Computer Algebra and Geometric Algebra with Applications, edited by H. Li, P. Olver & G. Sommer, pp. 229-238. IWMM 2004, GIAE 2004.Lecture Notes in Computer Science, Vol. 3519. Berlin: Springer. · Zbl 1078.68798
[10] Buss, S. R. & Fillmore, J. P. (2001).ACM Trans. Graph.20, 95-126.
[11] Chen, Y. & Medioni, G. (1991).Proc. 1991 IEEE Int. Conf. Robot. Autom.Vol. 3, pp. 2724-2729. IEEE.
[12] Cliff, N. (1966).Psychometrika,31, 33-42.
[13] Coutsias, E., Seok, C. & Dill, K. (2004).J. Comput. Chem.25, 1849- 1857.
[14] Coutsias, E. & Wester, M. (2019).J. Comput. Chem.40, 1496-1508.
[15] Davenport, P. (1968).A Vector Approach to the Algebra of Rotations with Applications.Tech. Rep. TN D-4696. NASA: Goddard Space Flight Center, USA.
[16] Denton, P. B., Park, S. J., Tao, T. & Zhang, X. (2019). arXiv:1908.03795 [math.RA].
[17] Descartes, R. (1637).The Geometry of Rene´ Descartes, Book III: On the Construction of Solid and Supersolid Problems.Facsimile of the first edition (1954), Dover.
[18] Lesk, A. M. (1986).Acta Cryst.A42, 110-113.
[19] Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J. & Fulk, D. (2000).Proc. ACM SIGGRAPH 2000, pp. 131-144.
[20] Liu, P., Agrafiotis, D. K. & Theobald, D. L. (2010).J. Comput. Chem. 31, 1561-1563.
[21] McLachlan, A. D. (1982).Acta Cryst.A38, 871-873.
[22] Manton, J. (2004).Proc. 8th Int. Conf. Control Autom. Robot. Vis. (ICARCV 2004), Vol. 3, pp. 2211-2216. IEEE.
[23] Markley, F. L. (1988).J. Astronaut. Sci.38, 245-258.
[24] Markley, F. L., Cheng, Y., Crassidis, J. L. & Oshman, Y. (2007).J. Guid. Contr. Dyn.30, 1193-1197.
[25] Markley, F. L. & Mortari, D. (2000).J. Astronaut. Sci.48, 359-380.
[26] Moakher, M. (2002).SIAM J. Matrix Anal. Appl.24, 1-16. · Zbl 1028.47014
[27] Nickalls, R. (1993).Math. Gaz.77, 354-359.
[28] Nickalls, R. (2009).Math. Gaz.93, 66-75.
[29] Nu¨chter, A., Lingemann, K., Hertzberg, J. & Surmann, H. (2007).J. Field Robot.,24, 699-722. · Zbl 1243.68294
[30] Park, F. C. & Ravani, B. (1997).ACM Trans. Graph.16, 277-295.
[31] Rusinkiewicz, S. & Levoy, M. (2001).Proc. Third Int. Conf. 3-D Digital Imaging Model., pp. 145-152. IEEE.
[32] Sarlette, A. & Sepulchre, R. (2009).SIAM J. Contr. Optim.48, 56- 76. · Zbl 1182.93010
[33] Scho¨nemann, P. (1966).Psychometrika,31, 1-10. · Zbl 0147.19401
[34] Shepperd, S. W. (1978).J. Guid. Contr.1, 223-224. · Zbl 0403.15019
[35] Shoemake, K. (1985).Comput. Graph.19, 245-254.
[36] Shuster, M. D. & Natanson, G. A. (1993).J. Astronaut. Sci.41, 545- 556.
[37] Theobald, D. L. (2005).Acta Cryst.A61, 478-480.
[38] Umeyama, S. (1991).IEEE Trans. Pattern Anal. Mach. Intell.13, 376- 380.
[39] Wahba, G. (1965).SIAM Rev.7, 409.
[40] Walker, M. W., Shao, L. & Volz, R. A. (1991).CVGIP Image Underst. 54, 358-367. · Zbl 0777.68102
[41] Weisstein, E. W. (2019a).Cubic formula, http://mathworld.wolfram. com/CubicFormula.html.
[42] Weisstein, E. W. (2019b).Quartic equation, http://mathworld. wolfram.com/QuarticEquation.html.
[43] Wikipedia (2018a).Kabsch algorithm, https://w.wiki/MoZ.
[44] Wikipedia (2018b).Wahba’s problem, https://w.wiki/MR4.
[45] Wikipedia (2019).Ars Magna (Gerolamo Cardano), https://w.wiki/ Mob.
[46] Zhang, Z.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.