×

Nonlinear function-on-scalar regression via functional universal approximation. (English) Zbl 1543.62617

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

fda (R); gamair
Full Text: DOI

References:

[1] Anderson, J.A. (1995) An introduction to neural networks. MIT press. · Zbl 0850.68263
[2] Barry, D. (1996) An empirical Bayes approach to growth curve analysis. Journal of the Royal Statistical Society: Series D (The Statistician), 45(1), 3-19.
[3] Berhane, K. & Molitor, N.‐T. (2008) A Bayesian approach to functional‐based multilevel modeling of longitudinal data: applications to environmental epidemiology. Biostatistics, 9(4), 686-699. · Zbl 1437.62395
[4] Brumback, B.A. & Rice, J.A. (1998) Smoothing spline models for the analysis of nested and crossed samples of curves. Journal of the American Statistical Association, 93(443), 961-976. · Zbl 1064.62515
[5] Chen, H. & Wang, Y. (2011) A penalized spline approach to functional mixed effects model analysis. Biometrics, 67(3), 861-870. · Zbl 1226.62030
[6] Cybenko, G. (1989) Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4), 303-314. · Zbl 0679.94019
[7] De Vito, S., Massera, E., Piga, M., Martinotto, L. & Di Francia, G. (2008) On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sensors and Actuators B: Chemical, 129(2), 750-757.
[8] Faraway, J.J. (1997) Regression analysis for a functional response. Technometrics, 39(3), 254-261. · Zbl 0891.62027
[9] Guo, W. (2002) Functional mixed effects models. Biometrics, 58(1), 121-128. · Zbl 1209.62072
[10] Gurney, K. (2018) An introduction to neural networks. CRC Press.
[11] Hornik, K. (1991) Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251-257.
[12] Leshno, M., Lin, V.Y., Pinkus, A. & Schocken, S. (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 6(6), 861-867.
[13] Li, J., Huang, C., Hongtu, Z. & Initiative, A.D.N. (2017) A functional varying‐coefficient single‐index model for functional response data. Journal of the American Statistical Association, 112(519), 1169-1181.
[14] Lin, X. & Zhang, D. (1999) Inference in generalized additive mixed models by using smoothing splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(2), 381-400. · Zbl 0915.62062
[15] Liu, H., You, J. & Cao, J. (2021) A dynamic interaction semiparametric function‐on‐scalar model. Journal of the American Statistical Association, 1-14.
[16] Luo, X., Zhu, L. & Zhu, H. (2016) Single‐index varying coefficient model for functional responses. Biometrics, 72(4), 1275-1284. · Zbl 1390.62291
[17] Morris, J.S. (2015) Functional regression. Annual Review of Statistics and its Application, 2, 321-359.
[18] Morris, J.S. & Carroll, R.J. (2006) Wavelet‐based functional mixed models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(2), 179-199. · Zbl 1110.62053
[19] Müller, B., Reinhardt, J. & Strickland, M.T. (1995) Neural networks: an introduction. Springer Science & Business Media. · Zbl 0831.68083
[20] Pinkus, A. (1999) Approximation theory of the MLP model in neural networks. Acta Numerica, 8, 143-195. · Zbl 0959.68109
[21] Ramsay, J.O. & Silverman, B.W. (2005) Functional data analysis. 2nd Edition. New York: Springer. · Zbl 1079.62006
[22] Reiss, P.T., Huang, L. & Mennes, M. (2010) Fast function‐on‐scalar regression with penalized basis expansions. The International Journal of Biostatistics, 6(1), 28.
[23] Scheipl, F., Staicu, A.‐M. & Greven, S. (2015) Functional additive mixed models. Journal of Computational and Graphical Statistics, 24(2), 477-501.
[24] Spitzner, D.J., Marron, J. & Essick, G. (2003) Mixed‐model functional Anova for studying human tactile perception. Journal of the American Statistical Association, 98(462), 263-272.
[25] Staniswalis, J.G. & Lee, J.J. (1998) Nonparametric regression analysis of longitudinal data. Journal of the American Statistical Association, 93(444), 1403-1418. · Zbl 1064.62522
[26] Winning, H., Larsen, F., Bro, R. & Engelsen, S. (2008) Quantitative analysis of NMR spectra with chemometrics. Journal of Magnetic Resonance, 190(1), 26-32.
[27] Wood, S.N. (2017) Generalized additive models: an introduction with R, chapter 6. CRC Press. · Zbl 1368.62004
[28] Wu, C.O. & Chiang, C.T. (2000) Kernel smoothing on varying coefficient models with longitudinal dependent variable. Statistica Sinica, 10, 433-456. · Zbl 0945.62047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.