×

Explaining transmission rate variations and forecasting epidemic spread in multiple regions with a semiparametric mixed effects SIR model. (English) Zbl 1543.62579

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

Stan; BayesDA
Full Text: DOI

References:

[1] Andersson, H. & Britton, T. (2000) Stochastic epidemic models and their statistical analysis, vol. 151. Lecture Notes in Statistics. New York: Springer‐Verlag. · Zbl 0951.92021
[2] Banerjee, A., Dunson, D.B. & Tokdar, S.T. (2013) Efficient Gaussian process regression for large datasets. Biometrika, 100, 75-89. · Zbl 1284.62257
[3] Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., et al. (2017) Stan: a probabilistic programming language. Journal of Statistical Software, 76, 1-32.
[4] Christensen, O.F., Roberts, G.O. & Sköld, M. (2006) Robust Markov chain Monte Carlo methods for spatial generalized linear mixed models. Journal of Computational and Graphical Statistics, 15, 1-17.
[5] Cori, A., Ferguson, N.M., Fraser, C. & Cauchemez, S. (2013) A new framework and software to estimate time‐varying reproduction numbers during epidemics. American Journal of Epidemiology, 178, 1505-1512.
[6] Cox, D.R., Gudmundsson, G., Lindgren, G., Bondesson, L., Harsaae, E., Laake, P., et al. (1981) Statistical analysis of time series: Some recent developments [with discussion and reply]. Scandinavian Journal of Statistics, 8, 93-115. · Zbl 0468.62079
[7] Dean, N. & Yang, Y. (2021) Discussion of “Regression models for understanding COVID‐19 epidemic dynamics with incomplete data”. Journal of the American Statistical Association, 116, 1587-1590. · Zbl 1506.62430
[8] Diggle, P.J., Tawn, J.A. & Moyeed, R.A. (1998) Model‐based geostatistics. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47, 299-350. · Zbl 0904.62119
[9] Dukic, V., Lopes, H.F. & Polson, N.G. (2012) Tracking epidemics with Google flu trends data and a state‐space SEIR model. Journal of the American Statistical Association, 107, 1410-1426. · Zbl 1258.62102
[10] Durham, G. & Geweke, J. (2014) Adaptive sequential posterior simulators for massively parallel computing environments. Advances in Econometrics, 34, 1-44. · Zbl 1453.62615
[11] Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A. & Rubin, D. (2013) Bayesian data analysis, 3rd edition, Chapman and Hall.
[12] Guan, Y. & Haran, M. (2018) A computationally efficient projection‐based approach for spatial generalized linear mixed models. Journal of Computational and Graphical Statistics, 27, 701-714. · Zbl 07498984
[13] Haario, H., Saksman, E. & Tamminen, J. (2001) An adaptive Metropolis algorithm. Bernoulli, 7, 223-242. · Zbl 0989.65004
[14] Hamer, W. (1906) Epidemic disease in England. The Lancet, 1, 733-739.
[15] Hespanha, J.P., Chinchilla, R., Costa, R.R., Erdal, M.K. & Yang, G. (2021) Forecasting COVID‐19 cases based on a parameter‐varying stochastic SIR model. Annual Reviews in Control, 51, 460-476.
[16] Hethcote, H.W. (2000) The mathematics of infectious diseases. SIAM Review, 42, 599-653. · Zbl 0993.92033
[17] IHME COVID‐19 Forecasting Team, (2021) Modeling COVID‐19 scenarios for the United States. Nature Medicine, 27, 94-105.
[18] Johndrow, J., Ball, P., Gargiulo, M. & Lum, K. (2020) Estimating the number of SARS‐CoV‐2 infections and the impact of mitigation policies in the United States. Harvard Data Science Review. https://hdsr.mitpress.mit.edu/pub/9421kmzi [Accessed 1st October 2022].
[19] Karako, K., Song, P., Chen, Y., Tang, W. & Kokudo, N. (2021) Overview of the characteristics of and responses to the three waves of COVID‐19 in Japan during 2020-2021. BioScience Trends, 15, 1-8.
[20] Keller, J.P., Zhou, T., Kaplan, A., Anderson, G.B. & Zhou, W. (2022) Tracking the transmission dynamics of COVID‐19 with a time‐varying coefficient state‐space model. Statistics in Medicine, 41, 2745-2767.
[21] Kermack, W.O. & McKendrick, A.G. (1927) A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London: Series A, 115, 700-721. · JFM 53.0517.01
[22] Melikechi, O., Young, A.L., Tang, T., Bowman, T., Dunson, D. & Johndrow, J. (2022) Limits of epidemic prediction using SIR models. Journal of Mathematical Biology, 85, 1-29. · Zbl 1500.92110
[23] Miasojedow, B., Moulines, E. & Vihola, M. (2013) An adaptive parallel tempering algorithm. Journal of Computational and Graphical Statistics, 22, 649-664.
[24] Monod, M., Blenkinsop, A., Xi, X., Hebert, D., Bershan, S., Tietze, S., et al. (2021) Age groups that sustain resurging COVID‐19 epidemics in the United States. Science, 371, eabe8372.
[25] Muecksch, F., Wise, H., Batchelor, B., Squires, M., Semple, E., Richardson, C., et al. (2021) Longitudinal serological analysis and neutralizing antibody levels in coronavirus disease 2019 convalescent patients. The Journal of Infectious Diseases, 223, 389-398.
[26] Orsted, I., Molvadgaard, M., Nielsen, H.L. & Nielsen, H. (2013) The first, second and third wave of pandemic influenza A (H1N1)pdm09 in North Denmark Region 2009-2011: a population‐based study of hospitalizations. Influenza and Other Respiratory Viruses, 7, 776-782.
[27] Osthus, D., Hickmann, K.S., Caragea, P.C., Higdon, D. & Del Valle, S.Y. (2017) Forecasting seasonal influenza with a state‐space SIR model. The Annals of Applied Statistics, 11, 202. · Zbl 1366.62236
[28] Osthus, D. & Moran, K.R. (2021) Multiscale influenza forecasting. Nature Communications, 12, 2991.
[29] Our World in Data (2022) COVID‐19 dataset. Available from: https://github.com/owid/covid‐19‐data [Accessed 22nd March 2022].
[30] Patterson, K.D. & Pyle, G.F. (1991) The geography and mortality of the 1918 influenza pandemic. Bulletin of the History of Medicine, 65, 4-21.
[31] Quick, C., Dey, R. & Lin, X. (2021) Regression models for understanding COVID‐19 epidemic dynamics with incomplete data. Journal of the American Statistical Association, 116, 1561-1577. · Zbl 1506.62459
[32] Ray, D., Salvatore, M., Bhattacharyya, R., Wang, L., Du, J., Mohammed, S., Purkayastha, S., Halder, A., Rix, A., Barker, D., Kleinsasser, M., Zhou, Y., Bose, D., Song, P., Banerjee, M., Baladandayuthapani, V., Ghosh, P., & Mukherjee, B. (2020) Predictions, role of interventions and effects of a historic national lockdown in India’s response to the COVID‐19 pandemic: data science call to arms. Harvard Data Science Review (Special Issue 1). Available from: https://hdsr.mitpress.mit.edu/pub/r1qq01kw [Accessed 1st October 2022].
[33] Roda, W.C., Varughese, M.B., Han, D. & Li, M.Y. (2020) Why is it difficult to accurately predict the COVID‐19 epidemic?Infectious Disease Modelling, 5, 271-281.
[34] Shaman, J. & Karspeck, A. (2012) Forecasting seasonal outbreaks of influenza. Proceedings of the National Academy of Sciences, 109, 20425-20430.
[35] smesir (2022) Github repository. Available from: https://github.com/davidbuch/smesir [Accessed 1st December 2022].
[36] Tang, L., Zhou, Y., Wang, L., Purkayastha, S., Zhang, L., He, J., et al. (2020) A review of multi‐compartment infectious disease models. International Statistical Review, 88, 462-513. · Zbl 07776809
[37] The New York Times (2021) Coronavirus (Covid‐19) Data in the United States. Available from: https://github.com/nytimes/covid-19-data [Accessed 22nd March 2022].
[38] Thompson, R., Stockwin, J., vanGaalen, R.D., Polonsky, J., Kamvar, Z., Demarsh, P., et al. (2019) Improved inference of time‐varying reproduction numbers during infectious disease outbreaks. Epidemics, 29, 100356.
[39] U.S.A. COVID‐19 Data (2022) GitHub repository. Available from: https://github.com/davidbuch/usa_covid_data [Accessed 1st December 2022].
[40] Vasudevan, V., Gnanasekaran, A., Sankar, V., Vasudevan, S.A. & Zou, J. (2021) Disparity in the quality of Covid‐19 data reporting across India. BMC Public Health, 21, 1-12.
[41] vonNeumann, J. & Burks, A.W. (1966) Theory of self‐reproducing automata. Urbana and London: University of Illinois Press.
[42] Wallinga, J. & Teunis, P. (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. American Journal of Epidemiology, 160, 509-516.
[43] Wang, L., Zhou, Y., He, J., Zhu, B., Wang, F., Tang, L., et al. (2020) An epidemiological forecast model and software assessing interventions on the COVID‐19 epidemic in China. Journal of Data Science, 18, 409-432.
[44] White, S.H., Del Rey, A.M. & Sánchez, G.R. (2007) Modeling epidemics using cellular automata. Applied Mathematics and Computation, 186, 193-202. · Zbl 1111.92052
[45] Woodard, D.B., Schmidler, S.C. & Huber, M. (2009) Conditions for rapid mixing of parallel and simulated tempering on multimodal distributions. The Annals of Applied Probability, 19, 617-640. · Zbl 1171.65008
[46] Zhou, T. & Ji, Y. (2020) Semiparametric Bayesian inference for the transmission dynamics of COVID‐19 with a state‐space model. Contemporary Clinical Trials, 97, 106146.
[47] Zhou, Y., Wang, L., Zhang, L., Shi, L., Yang, K., He, J., Bangyao, Z., Overton, W., Purkayastha, S., & Song, P. (2020) A spatiotemporal epidemiological prediction model to inform county‐level COVID‐19 risk in the United States. Harvard Data Science Review. Available from: https://hdsr.mitpress.mit.edu/pub/qqg19a0r [Accessed 1st October 2022].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.