×

The non-abelian Hodge correspondence on some non-Kähler manifolds. (English) Zbl 1543.53023

Summary: The non-abelian Hodge correspondence was established by K. Corlette [J. Differ. Geom. 28, No. 3, 361–382 (1988; Zbl 0676.58007)], S. K. Donaldson [Proc. Lond. Math. Soc. (3) 55, 127–131 (1987; Zbl 0634.53046)], N. J. Hitchin [Proc. Lond. Math. Soc. (3) 55, 59–126 (1987; Zbl 0634.53045)] and C. T. Simpson [J. Am. Math. Soc. 1, No. 4, 867–918 (1988; Zbl 0669.58008)], [Publ. Math., Inst. Hautes Étud. Sci. 75, 5–95 (1992; Zbl 0814.32003)]. It states that on a compact Kähler manifold \((X, \omega)\), there is a one-to-one correspondence between the moduli space of semi-simple flat complex vector bundles and the moduli space of poly-stable Higgs bundles with vanishing Chern numbers. In this paper, we extend this correspondence to the projectively flat bundles over some non-Kähler manifold cases. Firstly, we prove an existence theorem of Poisson metrics on simple projectively flat bundles over compact Hermitian manifolds. As its application, we obtain a vanishing theorem of characteristic classes of projectively flat bundles. Secondly, on compact Hermitian manifolds which satisfy Gauduchon and astheno-Kähler conditions, we combine the continuity method and the heat flow method to prove that every semi-stable Higgs bundle with \(\Delta \left( E,\bar{\partial}_E\right) \cdot \left[ \omega^{n-2}\right] = 0\) must be an extension of stable Higgs bundles. Using the above results, over some compact non-Kähler manifolds \((M,\omega)\), we establish an equivalence of categories between the category of semi-stable (poly-stable) Higgs bundles \((E,\bar{\partial}_E, \phi)\) with \(\Delta (E,\bar{\partial}_E) \cdot [\omega^{n-2}] = 0\) and the category of (semi-simple) projectively flat bundles \((E, D)\) with \(\sqrt{-1} F_D = \alpha \otimes\mathrm{Id}_E\) for some real \((1,1)\)-form \(\alpha\).

MSC:

53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
58D27 Moduli problems for differential geometric structures
Full Text: DOI

References:

[1] Biquard, O.; Boalch, P., Wild non-abelian Hodge theory on curves, Compos Math, 140, 179-204 (2004) · Zbl 1051.53019 · doi:10.1112/S0010437X03000010
[2] Bismut, J-M; Lott, J., Flat vector bundles, direct images and higher real analytic torsion, J Amer Math Soc, 8, 291-363 (1995) · Zbl 0837.58028 · doi:10.1090/S0894-0347-1995-1303026-5
[3] Biswas I, Dumitrescu S. Nonabelian Hodge theory for Fujiki class C manifolds. arXiv:2006.09055v2, 2022 · Zbl 1510.32025
[4] Bott, R.; Chern, S. S., Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math, 114, 71-112 (1965) · Zbl 0148.31906 · doi:10.1007/BF02391818
[5] Bradlow, S. B.; García-Prada, O.; Mundet i. Riera, I., Relative Hitchin-Kobayashi correspondences for principal pairs, Q J Math, 54, 171-208 (2003) · Zbl 1064.53056 · doi:10.1093/qmath/hag013
[6] Buchdahl, N. P., Hermitian-Einstein connections and stable vector bundles over compact complex surfaces, Math Ann, 280, 625-648 (1988) · Zbl 0617.32044 · doi:10.1007/BF01450081
[7] Chen X M, Wentworth R A. The nonabelian Hodge correspondence for balanced hermitian metrics of Hodge-Riemann type. arXiv:2106.09133, 2021
[8] Chen, Y. M.; Struwe, M., Existence and partial regularity results for the heat flow for harmonic maps, Math Z, 201, 83-103 (1989) · Zbl 0652.58024 · doi:10.1007/BF01161997
[9] Collins, T. C.; Jacob, A.; Yau, S-T, Poisson metrics on flat vector bundles over non-compact curves, Comm Anal Geom, 27, 529-597 (2019) · Zbl 1422.53057 · doi:10.4310/CAG.2019.v27.n3.a2
[10] Corlette, K., Flat G-bundles with canonical metrics, J Differential Geom, 28, 361-382 (1988) · Zbl 0676.58007 · doi:10.4310/jdg/1214442469
[11] Demailly J-P. Complex analytic and differential geometry. https://www-fourier.ujf-grenoble.fr/∼demailly/manuscripts/agbook.pdf, 2012
[12] Demailly, J-P; Peternell, T.; Schneider, M., Compact complex manifolds with numerically effective tangent bundles, J Algebraic Geom, 3, 295-345 (1994) · Zbl 0827.14027
[13] Deng, Y., Generalized Okounkov bodies, hyperbolicity-related and direct image problems (2017), Grenoble: Université Grenoble Alpes, Grenoble
[14] Donaldson, S. K., Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc Lond Math Soc (3), 50, 1-26 (1985) · Zbl 0529.53018 · doi:10.1112/plms/s3-50.1.1
[15] Donaldson, S. K., Twisted harmonic maps and the self-duality equations, Proc Lond Math Soc (3), 55, 127-131 (1987) · Zbl 0634.53046 · doi:10.1112/plms/s3-55.1.127
[16] Dupont, J. L., Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology, 15, 233-245 (1976) · Zbl 0331.55012 · doi:10.1016/0040-9383(76)90038-0
[17] García-Prada, O.; Gothen, P. B.; Mundet i. Riera, I., Higgs bundles and surface group representations in the real symplectic group, J Topol, 6, 64-118 (2013) · Zbl 1303.14043 · doi:10.1112/jtopol/jts030
[18] García-Prada, O.; Mundet i. Riera, I., Representations of the fundamental group of a closed oriented surface in Sp(4, ℝ), Topology, 43, 831-855 (2004) · Zbl 1070.14014 · doi:10.1016/j.top.2003.10.010
[19] Gauduchon, P., La 1-forme de torsion d’une variété hermitienne compacte, Math Ann, 267, 495-518 (1984) · Zbl 0523.53059 · doi:10.1007/BF01455968
[20] Hitchin, N. J., The self-duality equations on a Riemann surface, Proc Lond Math Soc (3), 55, 59-126 (1987) · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[21] Hong, M. C.; Tian, G., Asymptotical behaviour of the Yang-Mills flow and singular Yang-Mills connections, Math Ann, 330, 441-472 (2004) · Zbl 1073.53084 · doi:10.1007/s00208-004-0539-9
[22] Jacob, A., Stable Higgs bundles and Hermitian-Einstein metrics on non-Kähler manifolds, Analysis, Complex Geometry, and Mathematical Physics: In Honor of Duong H. Phong, 117-140 (2015), Providence: Amer Math Soc, Providence · Zbl 1336.32021 · doi:10.1090/conm/644/12781
[23] Jost, J.; Yau, S-T, A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry, Acta Math, 170, 221-254 (1993) · Zbl 0806.53064 · doi:10.1007/BF02392786
[24] Jost, J.; Zuo, K., Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties, J Differential Geom, 47, 469-503 (1997) · Zbl 0911.58012 · doi:10.4310/jdg/1214460547
[25] Kamber, F. W.; Tondeur, P., Characteristic invariants of foliated bundles, Manuscripta Math, 11, 51-89 (1974) · Zbl 0267.57012 · doi:10.1007/BF01189091
[26] Korman, E. O., Characteristic classes of Higgs bundles and Reznikov’s theorem, Manuscripta Math, 152, 433-442 (2017) · Zbl 1378.32014 · doi:10.1007/s00229-016-0871-x
[27] Li, J.; Yau, S-T, Hermitian-Yang-Mills connection on non-Kaähler manifolds, 560-573 (1987), Singapore: World Scientific, Singapore · Zbl 0664.53011
[28] Li, J.; Yau, S-T; Zheng, F. Y., On projectively flat Hermitian manifolds, Comm Anal Geom, 2, 103-109 (1994) · Zbl 0837.53053 · doi:10.4310/CAG.1994.v2.n1.a6
[29] Li, J. Y.; Zhang, X., The gradient flow of Higgs pairs, J Eur Math Soc (JEMS), 13, 1373-1422 (2011) · Zbl 1228.53032 · doi:10.4171/JEMS/284
[30] Li, J. Y.; Zhang, X., The limit of the Yang-Mills-Higgs flow on Higgs bundles, Int Math Res Not IMRN, 2017, 232-276 (2017) · Zbl 1405.53090 · doi:10.1093/imrn/rnw008
[31] Lübke, M., Einstein metrics and stability for flat connections on compact Hermitian manifolds, and a correspondence with Higgs operators in the surface case, Doc Math, 4, 487-512 (1999) · Zbl 0977.53022 · doi:10.4171/dm/66
[32] Lübke, M.; Teleman, A., The Kobayashi-Hitchin Correspondence (1995), Singapore: World Scientific, Singapore · Zbl 0849.32020 · doi:10.1142/2660
[33] Lübke, M.; Teleman, A., The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds (2006), Providence: Amer Math Soc, Providence · Zbl 1103.53014
[34] McNamara J, Zhao Y F. Limiting behavior of Donaldson’s heat flow on non-Kähler surfaces. arXiv:1403.8037, 2014
[35] Mochizuki, T., Kobayashi-Hitchin Correspondence for Tame Harmonic Bundles and an Application (2006), Paris: Soc Math France, Paris · Zbl 1119.14001
[36] Mochizuki, T., Kobayashi-Hitchin correspondence for tame harmonic bundles II, Geom Topol, 13, 359-455 (2009) · Zbl 1176.14007 · doi:10.2140/gt.2009.13.359
[37] Narasimhan, M. S.; Seshadri, C. S., Stable and unitary vector bundles on a compact Riemann surface, Ann of Math (2), 82, 540-567 (1965) · Zbl 0171.04803 · doi:10.2307/1970710
[38] Nie, Y. C.; Zhang, X., A note on semistable Higgs bundles over compact Kähler manifolds, Ann Global Anal Geom, 48, 345-355 (2015) · Zbl 1331.53038 · doi:10.1007/s10455-015-9474-0
[39] Nie, Y. C.; Zhang, X., Semistable Higgs bundles over compact Gauduchon manifolds, J Geom Anal, 28, 627-642 (2018) · Zbl 1391.32026 · doi:10.1007/s12220-017-9835-y
[40] Nie, Y. C.; Zhang, X., The limiting behaviour of Hermitian-Yang-Mills flow over compact non-Kähler manifolds, Sci China Math, 63, 1369-1390 (2020) · Zbl 1478.53147 · doi:10.1007/s11425-018-9411-7
[41] Otal, A.; Ugarte, L.; Villacampa, R., Hermitian metrics on compact complex manifolds and their deformation limits, Special Metrics and Group Actions in Geometry, 269-290 (2017), Cham: Springer, Cham · Zbl 1457.53051 · doi:10.1007/978-3-319-67519-0_11
[42] Reznikov, A., All regulators of flat bundles are torsion, Ann of Math (2), 141, 373-386 (1995) · Zbl 0865.14003 · doi:10.2307/2118525
[43] Simpson, C. T., Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J Amer Math Soc, 1, 867-918 (1988) · Zbl 0669.58008 · doi:10.1090/S0894-0347-1988-0944577-9
[44] Simpson, C. T., Higgs bundles and local systems, Publ Math Inst Hautes Études Sci, 75, 5-95 (1992) · Zbl 0814.32003 · doi:10.1007/BF02699491
[45] Uhlenbeck, K.; Yau, S-T, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm Pure Appl Math, 39, S257-S293 (1986) · Zbl 0615.58045 · doi:10.1002/cpa.3160390714
[46] Zhang, C. J.; Zhang, P.; Zhang, X., Higgs bundles over non-compact Gauduchon manifolds, Trans Amer Math Soc, 374, 3735-3759 (2021) · Zbl 1465.53040 · doi:10.1090/tran/8323
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.