×

Schauder estimates for stationary and evolution equations associated to stochastic reaction-diffusion equations driven by colored noise. (English) Zbl 1543.35280

Summary: We consider stochastic reaction-diffusion equations with colored noise on the space of real-valued and continuous functions on a compact subset of \(\mathbb{R}^d\) for \(d=1,2,3\). We prove Schauder-type estimates, which will depend on the color of the noise, for the stationary and evolution problems associated with the corresponding transition semigroup.

MSC:

35R15 PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables)
35R60 PDEs with randomness, stochastic partial differential equations
47D06 One-parameter semigroups and linear evolution equations
47D07 Markov semigroups and applications to diffusion processes
60H30 Applications of stochastic analysis (to PDEs, etc.)

References:

[1] Kružkov, S. N., Castro, A., Lopes, M. (1975). Schauder type estimates, and theorems on the existence of the solution of fundamental problems for linear and nonlinear parabolic equations. Dokl. Akad. Nauk SSSR. 220(2): 60-64. Soviet Math. Dokl. · Zbl 0343.35044
[2] Kružkov, S. N., Castro, A., Lopes, M. (1980). Mayoraciones de schauder y teorema de existencia de las soluciones del problema de Cauchy para ecuaciones parabolicas lineales y no lineales (i). Ciencias Matemáticas. 1: 55-76.
[3] Kružkov, S. N., Castro, A., Lopes, M. (1982). Mayoraciones de schauder y teorema de existencia de las soluciones del problema de Cauchy para ecuaciones parabolicas lineales y no lineales (ii). Ciencias Matemáticas. 3: 37-56.
[4] Ladyženskaja, O. A, Ural’ceva, N. (1968). Ural’ceva. Linear and Quasilinear Elliptic Equations. New York-London: Academic Press. · Zbl 0164.13002
[5] Ladyženskaja, O. A., Solonnikov, V. A., Ural’ceva, N. (1968). Ural’ceva. Linear and quasilinear equations of parabolic type. In Translations of Mathematical Monographs, Vol 23. Providence, RI: American Mathematical Society. · Zbl 0174.15403
[6] Cannarsa, P., Da Prato, G. (1994). Schauder estimates for Kolmogorov equations in Hilbert spaces. In Progress in Elliptic and Parabolic Partial Differential Equations, Vol. 350. Capri, Harlow: Longman, pp. 100-111. · Zbl 0890.35159
[7] Da Prato, G. (2003). A new regularity result for Ornstein-Uhlenbeck generators and applications. J. Evol. Equ. 3(3): 485-498. doi:. · Zbl 1060.47046
[8] Daprato, G., Lunardi, A. (1995). On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal. 131(1):94-114. doi:. · Zbl 0846.47004
[9] Lunardi, A. (1997). Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in bfR^n. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24(4): 133-164. · Zbl 0887.35062
[10] Priola, E. (2009). Global Schauder estimates for a class of degenerate Kolmogorov equations. Studia Math. 194(2):117-153. doi:. · Zbl 1178.35102
[11] Addona, D., Masiero, F., Priola, E. (2023). A BSDEs approach to pathwise uniqueness for stochastic evolution equations. J. Differ. Equ. 366: 192-248. doi:. · Zbl 1516.60035
[12] Da Prato, G., Flandoli, F. (2010). Pathwise uniqueness for a class of SDE in Hilbert spaces and applications. J. Funct. Anal. 259(1): 243-267. doi:. · Zbl 1202.60096
[13] Da Prato, G., Flandoli, F., Priola, E., Röckner, M. (2013). Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41(5): 3306-3344. · Zbl 1291.35455
[14] Zambotti, L. (2000). An analytic approach to existence and uniqueness for martingale problems in infinite dimensions. Probab. Theory Relat. Fields. 118(2): 147-168. doi:. · Zbl 0963.60059
[15] Cerrai, S., Da Prato, G. (2012). Schauder estimates for elliptic equations in Banach spaces associated with stochastic reaction-diffusion equations. J. Evol. Equ. 12(1): 83-98. doi:. · Zbl 1245.35155
[16] Lunardi, A., Röckner, M. (2021). Schauder theorems for a class of (pseudo-)differential operators on finite- and infinite-dimensional state spaces. J. London Math. Soc. 104(2): 492-540. doi:. · Zbl 1478.35065
[17] Cerrai, S., (2001). Second order PDE’s in finite and infinite dimension. In Lecture Notes in Mathematics, Vol. 1762. Berlin: Springer-Verlag. · Zbl 0983.60004
[18] Fuhrman, M., Orrieri, C. (2016). Stochastic maximum principle for optimal control of a class of nonlinear SPDEs with dissipative drift. SIAM J. Control Optim. 54(1): 341-371. doi:. · Zbl 1345.49036
[19] Cerrai, S., Lunardi, A. (2021). Smoothing effects and maximal Hölder regularity for non-autonomous Kolmogorov equations in infinite dimension. arXiv:2111.05421.
[20] Cerrai, S., Da Prato, G., Flandoli, F. (2013). Pathwise uniqueness for stochastic reaction-diffusion equations in Banach spaces with an Hölder drift component. Stoch. PDE: Anal. Comp. 1(3): 507-551. doi:. · Zbl 1304.60071
[21] Bignamini, D. A., Ferrari, S. (2023b). Schauder regularity results in separable Hilbert spaces. J. Differ. Equ. 370: 305-345. doi:. · Zbl 1518.35702
[22] Cerrai, S., Lunardi, A. (2019). Schauder theorems for Ornstein-Uhlenbeck equations in infinite dimension. J. Differ. Equ. 267(12):7462-7482. doi:. · Zbl 1422.35183
[23] Cannarsa, P., Da Prato, G. (1996). Infinite-dimensional elliptic equations with Hölder-continuous coefficients. Adv. Differ. Equ. 1(3): 425-452. · Zbl 0926.35153
[24] Priola, E. (1999). Partial Differential Equations with Infinitely Many Variables. Università degli Studi di Torino: Iris, AperTO,
[25] Priola, E., Zambotti, L. (2000). New optimal regularity results for infinite-dimensional elliptic equations. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 3(8): 411-429. · Zbl 0959.35076
[26] Athreya, S. R., Bass, R. F., Gordina, M., Perkins, E. A. (2006). Infinite dimensional stochastic differential equations of Ornstein-Uhlenbeck type. Stoch. Process. Appl. 116(3):381-406. doi:. · Zbl 1089.60037
[27] Athreya, S. R., Bass, R. F., Perkins, E. A. (2005). Hölder norm estimates for elliptic operators on finite and infinite-dimensional spaces. Trans. Amer. Math. Soc. 357(12): 5001-5029. doi:. · Zbl 1131.35008
[28] Da Prato, G. (2012). Schauder estimates for some perturbation of an infinite dimensional Ornstein-Uhlenbeck operator. DCDS-S. 6(3): 637-647. doi:. · Zbl 1287.47036
[29] Diestel, J., Jr. Uhl, J. J., (1977). Vector measures. In Mathematical Surveys, Vol. 15. Providence, RI 15: American Mathematical Society. · Zbl 0369.46039
[30] Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V. (2011). Banach space theory. In CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. New York: Springer. · Zbl 1229.46001
[31] Bennett, C., Sharpley, R. (1998). Interpolation of operators. In Pure and Applied Mathematics, Vol. 129. Boston, MA: Academic Press, Inc.
[32] Lunardi, A. (1995). Analytic Semigroups and Optimal Regularity in Parabolic Problems. Basel AG, Basel: Birkhäuser/Springer. · Zbl 0816.35001
[33] Bignamini, D. A., Ferrari, S. (2023a). Regularizing properties of (non-Gaussian) transition semigroups in Hilbert spaces. Potential Anal. 58(1): 1-35. doi:. · Zbl 1507.35351
[34] Bignamini, D.A., Ferrari, S. (2022). On generators of transition semigroups associated to semilinear stochastic partial differential equations. J. Math. Anal. Appl. 508(1): 125878. doi:. · Zbl 1490.60222
[35] Masiero, F. (2007). Regularizing properties for transition semigroups and semilinear parabolic equations in Banach spaces. Electron. J. Probab. 12(13): 387-419. · Zbl 1127.60065
[36] Addona, D., Bandini, E., Masiero, F. (2020). A nonlinear Bismut-Elworthy formula for HJB equations with quadratic Hamiltonian in Banach spaces. Nonlinear Differ. Equ. Appl. 27(4): Article 37. · Zbl 1443.60058
[37] Angiuli, L., Bignamini, D. A., Ferrari, S. (2023). Harnack inequalities with power \(p\in(1,+\operatorname{\infty})\) for transition semigroups in Hilbert spaces.Nonlinear Differ. Equ. Appl. 30(1): Article 6. · Zbl 1521.60025
[38] Bignamini, D. A. (2023). L^2-theory for transition semigroups associated to dissipative systems.Stoch. PDE: Anal. Comp. 11(3):988-1043. doi:. · Zbl 07742933
[39] Da Prato, G., Zabczyk, J. (2014). Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Vol. 152. Cambridge: Cambridge University Press. · Zbl 1317.60077
[40] Cerrai, S. (1994). A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum. 49(1):349-367. doi:. · Zbl 0817.47048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.