×

Normalized solutions of non-autonomous Schrödinger equations involving Sobolev critical exponent. (English) Zbl 1543.35225

Summary: In this paper, we look for normalized solutions to the following non-autonomous Schrödinger equation \[ \begin{cases} -\Delta u=\lambda u+h(x)|u|^{q-2}u+|u|^{2^*-2}u \text{ in } \mathbb{R}^N, \\ \int_{\mathbb{R}^N} |u|^2 \mathrm{d}x=a, \end{cases} \] where \(N \geq 3\), \(a>0\), \(\lambda \in \mathbb{R}\), \(h \neq const\) and \(2^*=\frac{2N}{N-2}\) is the Sobolev critical exponent. In the \(L^2\)-subcritical regime (i.e. \(2<q<2+\frac{4}{N}\)), by proposing some new conditions on \(h\), we verify that the corresponding Pohozaev manifold is a natural constraint and establish the existence of normalized ground states. Compared to the \(L^2\)-subcritical regime, it is necessary to apply some reverse conditions to \(h\) provided that at least \(L^2\)-critical regime (i.e. \(2+\frac{4}{N} \leq q<2^*\)) is considered. We prove the existence of minimizer on the Pohozaev manifold of the associated energy functional and determine that the minimizer is a normalized solution by using the classical deformation lemma. In particular, by imposing further assumptions on \(h\), the ground states can be obtained.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J20 Variational methods for second-order elliptic equations
35B33 Critical exponents in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35R01 PDEs on manifolds
49J20 Existence theories for optimal control problems involving partial differential equations
Full Text: DOI

References:

[1] Alves, C.; Ji, C., Normalized solutions for the Schrödinger equations with \(L^2\)-subcritical growth and different types of potentials, J. Geom. Anal., 32, 165, 2022 · Zbl 1490.35388 · doi:10.1007/s12220-022-00908-0
[2] Alves, C.; Ji, C.; Miyagaki, O., Normalized solutions for a Schrödinger equation with critical growth in \({\mathbb{R} }^N\), Calc. Var. Partial Differ. Equ., 61, 18, 2022 · Zbl 1481.35141 · doi:10.1007/s00526-021-02123-1
[3] Bartsch, T.; Soave, N., A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 272, 4998-5037, 2017 · Zbl 1485.35173 · doi:10.1016/j.jfa.2017.01.025
[4] Bartsch, T.; Molle, R.; Rizzi, M.; Verzini, G., Normalized solutions of mass supercritical Schrödinger equations with potential, Commun. Partial Differ. Equ., 46, 1729-1756, 2021 · Zbl 1496.35183 · doi:10.1080/03605302.2021.1893747
[5] Bahrouni, A.; Ounaies, H.; Rădulescu, V., Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potentials, Proc. R. Soc. Edinb. Sect. A, 145, 445-465, 2015 · Zbl 1326.35329 · doi:10.1017/S0308210513001169
[6] Berestycki, H.; Lions, P., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., 82, 313-346, 1983 · Zbl 0533.35029 · doi:10.1007/BF00250555
[7] Bieganowski, B.; Mederski, J., Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth, J. Funct. Anal., 280, 2020 · Zbl 1465.35151 · doi:10.1016/j.jfa.2021.108989
[8] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 486-490, 1983 · Zbl 0526.46037 · doi:10.1090/S0002-9939-1983-0699419-3
[9] Chen, S.; Tang, X., Normalized solutions for nonautonomous Schrödinger equations on a suitable manifold, J. Geom. Anal., 30, 1637-1660, 2020 · Zbl 1437.35186 · doi:10.1007/s12220-019-00274-4
[10] Chen, Z.; Zou, W., Existence of normalized positive solutions for a class of nonhomogeneous elliptic equations, J. Geom. Anal., 33, 147, 2020 · Zbl 1512.35184 · doi:10.1007/s12220-023-01199-9
[11] Ding, Y.; Zhong, X., Normalized solution to the Schrödinger equation with potential and general nonlinear term: mass super-critical case, J. Differ. Equ., 334, 194-215, 2022 · Zbl 1496.35357 · doi:10.1016/j.jde.2022.06.013
[12] Feynman, R.; Vernon, J.; Hellwarth, R., Geometrical representation of the Schrödinger equation for solving maser problems, J. Appl. Phys., 28, 49-52, 1957 · doi:10.1063/1.1722572
[13] Ikoma, N.; Miyamoto, Y., Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities, Calc. Var. Partial Differ. Equ., 59, 48, 2020 · Zbl 1434.35179 · doi:10.1007/s00526-020-1703-0
[14] Jeanjean, L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 27, 1633-1659, 1997 · Zbl 0877.35091 · doi:10.1016/S0362-546X(96)00021-1
[15] Jeanjean, L.; Le, T., Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann., 384, 101-134, 2022 · Zbl 1497.35433 · doi:10.1007/s00208-021-02228-0
[16] Jeanjean, L.; Jendrej, J.; Le, T.; Visciglia, N., Orbital stability of ground states for a Sobolev critical Schrödinger equation, J. Math. Pures Appl., 164, 158-179, 2022 · Zbl 1537.35324 · doi:10.1016/j.matpur.2022.06.005
[17] Lehrer, R.; Maia, L., Positive solutions of asymptotically linear equations via Pohozaev manifold, J. Funct. Anal., 266, 213-246, 2014 · Zbl 1305.35034 · doi:10.1016/j.jfa.2013.09.002
[18] Molle, R.; Riey, G.; Verzini, G., Normalized solutions to mass supercritical Schrödinger equations with negative potential, J. Differ. Equ., 333, 302-331, 2022 · Zbl 1496.35181 · doi:10.1016/j.jde.2022.06.012
[19] Shioji, N.; Watanabe, K., A generalized Pohozaev identity and uniqueness of positive radial solutions of \(\Delta u+g(r)u+h(r)u^p=0\), J. Differ. Equ., 255, 4448-4475, 2013 · Zbl 1286.35007 · doi:10.1016/j.jde.2013.08.017
[20] Shioji, N.; Watanabe, K., Uniqueness and nondegeneracy of positive radial solutions of \(div(\rho \nabla u)+\rho (-gu+hu^p)=0\), Calc. Var. Partial Differ. Equ., 55, 32, 2016 · Zbl 1342.35086 · doi:10.1007/s00526-016-0970-2
[21] Soave, N., Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equ., 279, 6941-6987, 2020 · Zbl 1440.35312 · doi:10.1016/j.jde.2020.05.016
[22] Soave, N., Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279, 2020 · Zbl 1440.35311 · doi:10.1016/j.jfa.2020.108610
[23] Song, L., Properties of the least action level, bifurcation phenomena and the existence of normalized solutions for a family of semi-linear elliptic equations without the hypothesis of autonomy, J. Differ. Equ., 315, 179-199, 2022 · Zbl 1484.35216 · doi:10.1016/j.jde.2022.01.035
[24] Stuart, C., Guidance properties of nonlinear planar waveguides, Arch. Ration. Mech. Anal., 125, 145-200, 1993 · Zbl 0801.35136 · doi:10.1007/BF00376812
[25] Stuart, C.; Zhou, H., Applying the mountain pass theorem to an asymptotically linear elliptic equation on \({\mathbb{R} }^N \), Commun. Partial Differ. Equ., 24, 1731-1758, 1999 · Zbl 0935.35043 · doi:10.1080/03605309908821481
[26] Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110, 353-372, 1976 · Zbl 0353.46018 · doi:10.1007/BF02418013
[27] Tang, Z.; Zhang, C.; Zhang, L.; Zhou, L., Normalized multibump solutions to nonlinear Schrödinger equations with steep potential well, Nonlinearity, 35, 4624-4658, 2022 · Zbl 1497.35129 · doi:10.1088/1361-6544/ac7b61
[28] Weinstein, M., Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87, 567-576, 1983 · Zbl 0527.35023 · doi:10.1007/BF01208265
[29] Wei, J.; Wu, Y., Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities, J. Funct. Anal., 283, 2022 · Zbl 1500.35114 · doi:10.1016/j.jfa.2022.109574
[30] Willem, M., Minimax Theorems, 1996, Boston: Birkhäuser, Boston · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
[31] Yang, J.; Yang, J., Normalized solutions and mass concentration for supercritical nonlinear Schrödinger equations, Sci. China Math., 65, 1383-1412, 2022 · Zbl 1497.35260 · doi:10.1007/s11425-020-1793-9
[32] Zhang, Z.; Zhang, Z., Normalized solutions of mass subcritical Schrödinger equations in exterior domains, NoDEA Nonlinear Differ. Equ. Appl., 29, 32, 2022 · Zbl 1490.35127 · doi:10.1007/s00030-022-00764-5
[33] Zhong, X.; Zou, W., A new deduction of the strict sub-additive inequality and its application: ground state normalized solution to Schrödinger equations with potential, Differ. Integral Equ., 36, 133-160, 2023 · Zbl 1538.35161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.