×

On the Neumann \((p, q)\)-eigenvalue problem in Hölder singular domains. (English) Zbl 1543.35121

Summary: In the article we study the Neumann \((p, q)\)-eigenvalue problems in bounded Hölder \(\gamma\)-singular domains \(\Omega_\gamma\subset\mathbb{R}^n\). In the case \(1 < p < \infty\) and \(1 < q < p^\ast_\gamma\) we prove solvability of this eigenvalue problem and existence of the minimizer of the associated variational problem. In addition, we establish some regularity results of the eigenfunctions and some estimates of \((p, q)\)-eigenvalues.

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35J25 Boundary value problems for second-order elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35P15 Estimates of eigenvalues in context of PDEs
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations

References:

[1] Anane, A.; Tsouli, N., On the second eigenvalue of the p-Laplacian, in nonlinear partial differential equations (Fés, 1994), Pitman Res. Notes Math. Ser., 343, 1-9, 1996 · Zbl 0854.35081
[2] Anane, A., Simplicité et isolation de la premiére valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math., 305, 16, 725-728, 1987 · Zbl 0633.35061
[3] Ciarlet, PG, Linear and nonlinear functional analysis with applications, 2013, Philadelphia, PA: Society for Industrial and Applied Mathematics, Philadelphia, PA · Zbl 1293.46001 · doi:10.1137/1.9781611972597
[4] Croce, G.; Henrot, A.; Pisante, G., Corrigendum to “An isoperimetric inequality for a nonlinear eigenvalue problem” [Ann. I. H. Poincaré - AN 29(1) (2012) 21-34], Ann. Inst. H. Poincaré Anal. Non Linéaire, 32, 2, 485-487, 2015 · Zbl 1332.49041 · doi:10.1016/j.anihpc.2014.04.006
[5] Damascelli, L., Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 4, 493-516, 1998 · Zbl 0911.35009 · doi:10.1016/s0294-1449(98)80032-2
[6] Drábek, P.; Kufner, A.; Nicolosi, F., Quasilinear elliptic equations with degenerations and singularities. De Gruyter Series in Nonlinear Analysis and Applications, 1997, Berlin: Walter de Gruyter & Co., Berlin · Zbl 0894.35002 · doi:10.1515/9783110804775
[7] Ercole, G., Solving an abstract nonlinear eigenvalue problem by the inverse iteration method, Bull. Braz. Math. Soc. (N.S.), 49, 3, 577-591, 2018 · Zbl 06971584 · doi:10.1007/s00574-018-0070-3
[8] Esposito, L.; Nitsch, C.; Trombetti, C., Best constants in Poincaré inequalities for convex domains, J. Convex Anal., 20, 253-264, 2013 · Zbl 1263.35010
[9] Federer, H., Geometric measure theory, 1969, Berlin: Springer Verlag, Berlin · Zbl 0176.00801
[10] Franzina, G.; Lamberti, PD, Existence and uniqueness for a \(p\)-Laplacian nonlinear eigenvalue problem, Electron. J. Differ Equ, 10, 10, 2010 · Zbl 1188.35125
[11] Garain, P.; Ukhlov, A., On \((p, q)\)-eigenvalues of subelliptic operators on nilpotent Lie groups, Trans. A. Razmadze Math. Inst., 176, 207-216, 2022 · Zbl 1497.35330
[12] García Azorero, JP; Peral Alonso, I., Existence and nonuniqueness for the \(p\)-Laplacian: nonlinear eigenvalues, Comm. Partial Differ. Equ., 12, 12, 1389-1430, 1987 · Zbl 0637.35069 · doi:10.1080/03605308708820534
[13] Gol’dshtein, V.; Gurov, L., Applications of change of variables operators for exact embedding theorems, Integral Equ. Oper. Theory, 19, 1-24, 1994 · Zbl 0806.46033 · doi:10.1007/BF01202289
[14] Gol’dshtein, V.; Pchelintsev, V.; Ukhlov, A., On the first eigenvalue of the degenerate p-Laplace operator in non-convex domains, Integral Equ. Oper. Theory, 90, 21, 2018 · Zbl 1401.35222 · doi:10.1007/s00020-018-2469-z
[15] Gol’dshtein, V.; Ukhlov, A., Weighted Sobolev spaces and embedding theorems, Trans. Amer. Math. Soc., 361, 7, 3829-3850, 2009 · Zbl 1180.46022 · doi:10.1090/S0002-9947-09-04615-7
[16] Gol’dshtein, V.; Ukhlov, A., On the first Eigenvalues of free vibrating membranes in conformal regular domains, Arch. Rational Mech. Anal., 221, 2, 893-915, 2016 · Zbl 1338.35422 · doi:10.1007/s00205-016-0988-9
[17] Gol’dshtein, V.; Ukhlov, A., The spectral estimates for the Neumann-Laplace operator in space domains, Adv. Math., 315, 166-193, 2017 · Zbl 1387.35433 · doi:10.1016/j.aim.2017.05.005
[18] Gol’dshtein, V.; Ukhlov, A., Composition Operators on Sobolev Spaces and Neumann Eigenvalues, Complex Anal. Oper. Theory, 13, 2781-2798, 2019 · Zbl 1430.35174 · doi:10.1007/s11785-018-0826-1
[19] Greco, A.; Lucia, M., Laplacian eigenvalues for mean zero functions with constant Dirichlet data, Forum Math., 20, 5, 763-782, 2008 · Zbl 1151.35062 · doi:10.1515/FORUM.2008.037
[20] Heinonen, J.; Kilpelinen, T.; Martio, O., Nonlinear potential theory of degenerate elliptic equations, 1993, Oxford: Clarendon Press, Oxford · Zbl 0780.31001
[21] Lê, An, Eigenvalue problems for the \(p\)-Laplacian, Nonlinear Anal., 64, 5, 1057-1099, 2006 · Zbl 1208.35015 · doi:10.1016/j.na.2005.05.056
[22] Lindqvist, P., Addendum: “On the equation \(\text{div}(|\nabla u|^{p-2} \nabla u)+\lambda |u|^{p-2}u=0\)”, [Proc. Amer. Math. Soc. 109(1) (1990), 157-164], Proc. Amer. Math. Soc., 116, 2, 583-584, 1992 · Zbl 0787.35027
[23] Maz’ya, V., Sobolev Spaces with applications to elliptic partial differential equations, 2011, Berlin: Springer, Berlin · Zbl 1217.46002 · doi:10.1007/978-3-642-15564-2
[24] Maz’ya, VG; Havin, VP, Non-linear potential theory, Rus. Math. Surv., 27, 71-148, 1972 · Zbl 0269.31004 · doi:10.1070/RM1972v027n06ABEH001393
[25] Nazarov, A.I.: On symmetry and asymmetry in a problem of shape optimization. arXiv:1208.3640
[26] Payne, LE; Weinberger, HF, An optimal Poincaré inequality for convex domains, Arch. Rat. Mech. Anal., 5, 286-292, 1960 · Zbl 0099.08402 · doi:10.1007/BF00252910
[27] Pólya, G.; Szegö, G., Isoperimetric Inequalities in Mathematical Physics, 1951, New Jersey: Princeton University Press, New Jersey · Zbl 0044.38301
[28] Trudinger, NS, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 20, 721-747, 1967 · Zbl 0153.42703 · doi:10.1002/cpa.3160200406
[29] Ukhlov, A., On mappings, which induce embeddings of Sobolev spaces, Siberian Math. J., 34, 185-192, 1993 · Zbl 0835.46035
[30] Vodop’yanov, SK; Gol’dstein, VM; Reshetnyak, YuG, On geometric properties of functions with generalized first derivatives, Uspekhi Mat. Nauk, 34, 17-65, 1979 · Zbl 0407.30012
[31] Vodop’yanov, SK; Ukhlov, AD, Sobolev spaces and \((P, Q)\)-Quasiconformal mappings of Carnot groups, Siberian Math. J., 39, 665-682, 1998 · Zbl 0917.46023 · doi:10.1007/BF02673052
[32] Vodop’yanov, SK; Ukhlov, AD, Superposition operators in Sobolev spaces, Rus. Math.: Izv. VUZ, 46, 11-33, 2002 · Zbl 1033.47020
[33] Vodop’yanov, SK; Ukhlov, AD, Set functions and its applications in the theory of Lebesgue and Sobolev spaces, Siberian Adv. Math., 14, 1-48, 2004
[34] Vodop’yanov, SK; Ukhlov, AD, Set functions and their applications in the theory of Lebesgue and Sobolev spaces, Siberian Adv. in Math, 15, 91-125, 2005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.