×

Algebraic independence and linear difference equations. (English) Zbl 1543.12003

Let \(K\) be a field and \(F\) a field extension of \(K\) endowed with an endomorphism \(\phi\) such that \(\phi(K)\subset K\). A linear \(\phi\)-difference equation over \(K\) is an equation of the form \(\phi^{n}(y) + a_{n-1}\phi^{n-1}(y)+\dots+a_{0}y = 0\) where \(a_{0},\dots, a_{n-1}\in K\). The paper under review is concerned with the situation when one has a tower of field extensions \(\mathbb{C}\subset K\subset F\) where \(K\) is equipped with a pair of automorphisms \((\phi, \sigma)\) that extend over \(F\). The authors consider the following three cases.
(2S): \(K = \mathbb{C}(x)\), \(F = \mathbb{C}((x^{-1}))\) (the field of Laurent series) with shift operators \(\phi(x) = x+h_{1}\), \(\sigma(x) = x+h_{2}\) where \(h_{1},h_{2}\in\mathbb{C} \) and \(h_{1}/h_{2}\notin\mathbb{Q}\).
(2Q): \(K = \cup_{j\geq 1}\mathbb{C}(x^{1/j})\) (the field of ramified rational functions also denoted by \(\mathbb{C}(x^{1/\ast})\)), \(F = \cup_{j\geq 1}\mathbb{C}((x^{1/j}))\) (the field of Puiseux series also denoted by \(\mathbb{C}((x^{1/\ast}))\)) and the pair of automorphisms \((\phi, \sigma)\) is defined by \(\phi(x) = q_{1}\) and \(\sigma(x) = q_{2}x\), where \(q_{1}, q_{2}\in\mathbb{C}\) and whenever \(q_{1}^{n_{1}}q_{2}^{n_{2}} = 1\) (\(n_{1}, n_{2}\in\mathbb{Z}\)), one has \(n_{1}=n_{2}=0\) (then \(q_{1}\) and \(q_{2}\) are said to be multiplicatively independent). Another restriction in this case is that \(q_{1}\) and \(q_{2}\) cannot both be algebraic numbers of modulus \(1\) whose Galois conjugates all have modulus \(1\).
(2M): \(K=\mathbb{C}(x^{1/\ast})\), \(F = \mathbb{C}((x^{1/\ast}))\) and the pair of automorphisms \((\phi, \sigma)\) is defined by \(\phi(x) = x^{p_{1}}\), \(\sigma(x) = x^{p_{2}}\) where \(p_{1}\) and \(p_{2}\) are two multiplicatively independent natural numbers.
As it is proved in [R. Schäfke and M. F. Singer, J. Eur. Math. Soc. (JEMS) 21, No. 9, 2751–2792 (2019; Zbl 1425.39003)], if \(K\), \(F\) and \((\phi, \sigma)\) are defined as in cases (2S), (2Q), and (2M), then an element \(f\in F\) cannot satisfy both a linear \(\phi\)-difference equation and a linear \(\sigma\)-difference equation with coefficients in \(K\) unless \(f\in K\). The main result of the paper under review gives an essential generalization of this theorem, as well as of several statement of [T. Dreyfus et al., Math. Z. 298, No. 3–4, 1751–1791 (2021; Zbl 1476.39007)]: it is proven that if \(K\), \(F\) and \((\phi, \sigma)\) are defined as in cases (2S), (2Q), (2M) and \(f\in F\) is a solution to a linear \(\phi\)-difference equation over \(K\), then either \(f\in K\) or \(f\) is \(\sigma\)-transcendental over \(K\).
As a consequence of this theorem, the authors obtain the following result. Let \(K\), \(F\) and \((\phi, \sigma)\) be defined as in cases (2S), (2Q), (2M), let \(f\in F\) be a solution to a linear \(\phi\)-difference equation over \(K\) and let \(g\in F\) be a solution of a \(\sigma\)-difference equation over \(K\). Then \(f\) and \(g\) are algebraically independent over \(K\) unless \(f\in K\) or \(g\) is algebraic over \(K\). As consequences of the obtained results, the authors settled a conjecture about Mahler functions put forward by Loxton and van der Poorten in 1987 and gave an application to the algebraic independence of \(q\)-hypergeometric functions.

MSC:

12H10 Difference algebra
11J81 Transcendence (general theory)
39A06 Linear difference equations
39A10 Additive difference equations
39A13 Difference equations, scaling (\(q\)-differences)
39A45 Difference equations in the complex domain

References:

[1] Adamczewski, B.: Mahler’s method. Doc. Math. Extra Vol. Mahler Selecta, 95-122 (2019) Zbl 1451.11002 · Zbl 1451.11002
[2] Adamczewski, B., Bell, J. P.: A problem about Mahler functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 17, 1301-1355 (2017) Zbl 1432.11086 MR 3752528 · Zbl 1432.11086
[3] Adamczewski, B., Dreyfus, T., Hardouin, C.: Hypertranscendence and linear difference equa-tions. J. Amer. Math. Soc. 34, 475-503 (2021) Zbl 1479.39004 MR 4280865 · Zbl 1479.39004
[4] Adamczewski, B., Faverjon, C.: Mahler’s method in several variables I: The theory of regular singular systems. arXiv:1809.04823 (2018)
[5] Adamczewski, B., Faverjon, C.: Mahler’s method in several variables II: Applications to base change problems and finite automata. arXiv:1809.04826 (2018)
[6] Adamczewski, B., Faverjon, C.: Mahler’s method in several variables and finite automata. arXiv:2012.08283 (2020)
[7] Amano, K., Masuoka, A., Takeuchi, M.: Hopf algebraic approach to Picard-Vessiot theory. In: Handbook of Algebra, Vol. 6, Elsevier/North-Holland, Amsterdam, 127-171 (2009) Zbl 1218.12003 MR 2553658 · Zbl 1218.12003
[8] Arreche, C. E., Singer, M. F.: Galois groups for integrable and projectively integrable linear difference equations. J. Algebra 480, 423-449 (2017) Zbl 1364.39002 MR 3633315 · Zbl 1364.39002
[9] Bézivin, J.-P., Boutabaa, A.: Sur les équations fonctionnelles p-adiques aux q-différences. Collect. Math. 43, 125-140 (1992) Zbl 0778.39009 MR 1223416 · Zbl 0778.39009
[10] Bombieri, E., Gubler, W.: Heights in Diophantine Geometry. New Math. Monogr. 4, Cam-bridge Univ. Press, Cambridge (2006) Zbl 1115.11034 MR 2216774 · Zbl 1115.11034
[11] Bourbaki, N.: Algebra II. Chapters 4-7. Elements of Mathematics (Berlin), Springer, Berlin (2003) Zbl 1017.12001 MR 1994218
[12] Di Vizio, L., Hardouin, C., Wibmer, M.: Difference Galois theory of linear differential equa-tions. Adv. Math. 260, 1-58 (2014) Zbl 1328.12013 MR 3209348 · Zbl 1328.12013
[13] Di Vizio, L., Hardouin, C., Wibmer, M.: Difference algebraic relations among solutions of linear differential equations. J. Inst. Math. Jussieu 16, 59-119 (2017) Zbl 1390.12006 MR 3591962 · Zbl 1390.12006
[14] Dreyfus, T., Hardouin, C., Roques, J.: Functional relations for solutions of q-difference equa-tions. Math. Z. 298, 1751-1791 (2021) Zbl 1476.39007 MR 4282147 · Zbl 1476.39007
[15] Franke, C. H.: Picard-Vessiot theory of linear homogeneous difference equations. Trans. Amer. Math. Soc. 108, 491-515 (1963) Zbl 0116.02604 MR 155819 · Zbl 0116.02604
[16] Gasper, G., Rahman, M.: Basic Hypergeometric Series. 2nd ed., Encyclopedia Math. Appl. 96, Cambridge Univ. Press, Cambridge (2004) Zbl 1129.33005 MR 2128719 · Zbl 1129.33005
[17] Hardouin, C.: Hypertranscendance des systèmes aux différences diagonaux. Compos. Math. 144, 565-581 (2008) Zbl 1183.39005 MR 2422340 · Zbl 1183.39005
[18] Hardouin, C., Singer, M. F.: Differential Galois theory of linear difference equations. Math. Ann. 342, 333-377 (2008) Zbl 1163.12002 MR 2425146 · Zbl 1163.12002
[19] Kubota, K. K.: An application of Kronecker’s theorem to transcendence theory. In: Séminaire de Théorie des Nombres, 1975-1976 (Univ. Bordeaux I, Talence), Lab. Théorie des Nombres, CNRS, Talence, exp. 25, 10 pp. (1976) Zbl 0356.10030 MR 0441882 · Zbl 0356.10030
[20] Levin, A. B.: Difference algebra. In: Handbook of Algebra. Vol. 4, Elsevier/North-Holland, Amsterdam, 241-334 (2006) Zbl 1209.12004 MR 2523422 · Zbl 1182.00009
[21] Loxton, J. H., van der Poorten, A. J.: Algebraic independence properties of the Fredholm series. J. Austral. Math. Soc. Ser. A 26, 31-45 (1978) Zbl 0392.10034 MR 510583 · Zbl 0392.10034
[22] Maier, A.: A difference version of Nori’s theorem. Math. Ann. 359, 759-784 (2014) Zbl 1306.12003 MR 3231015 · Zbl 1306.12003
[23] Medvedev, A., Nguyen, D.-K., Scanlon, T.: Skew-invariant curves and the algebraic indepen-dence of Mahler functions. arXiv:2203.05083 (2022)
[24] Milne, J. S.: Algebraic Groups. Cambridge Stud. Adv. Math. 170, Cambridge Univ. Press, Cambridge (2017) Zbl 1390.14004 MR 3729270 · Zbl 1390.14004
[25] Nishioka, K.: Algebraic independence by Mahler’s method and S-unit equations. Compos. Math. 92, 87-110 (1994) Zbl 0802.11029 MR 1275722 · Zbl 0802.11029
[26] Ovchinnikov, A., Wibmer, M.: -Galois theory of linear difference equations. Int. Math. Res. Notices 2015, 3962-4018 Zbl 1388.12011 MR 3356746 · Zbl 1388.12011
[27] Roques, J.: On the algebraic relations between Mahler functions. Trans. Amer. Math. Soc. 370, 321-355 (2018) Zbl 1376.39002 MR 3717982 · Zbl 1376.39002
[28] Schäfke, R., Singer, M.: Consistent systems of linear differential and difference equations. J. Eur. Math. Soc. 21, 2751-2792 (2019) Zbl 1425.39003 MR 3985611 · Zbl 1425.39003
[29] Tomašić, I., Wibmer, M.: Strongly étale difference algebras and Babbitt’s decomposition. J. Algebra 504, 10-38 (2018) Zbl 1450.12003 MR 3784812 · Zbl 1450.12003
[30] van der Poorten, A. J.: On the transcendence and algebraic independence of certain some-what amusing numbers (results of Loxton and Van der Poorten). In: Séminaire de Théorie des Nombres, 1975-1976 (Univ. Bordeaux I, Talence), Lab. Théorie des Nombres, CNRS, Talence, exp. 14, 13 pp. (1976) Zbl 0356.10028 MR 0437471 · Zbl 0356.10028
[31] van der Poorten, A. J.: Remarks on automata, functional equations and transcendence. In: Séminaire de Théorie des Nombres de Bordeaux (1986-1987), exp. 27, 11 pp. (1987)
[32] van der Put, M., Singer, M. F.: Galois Theory of Difference Equations. Lecture Notes in Math. 1666, Springer, Berlin (1997) Zbl 0930.12006 MR 1480919 · Zbl 0930.12006
[33] Waldschmidt, M.: Sur la nature arithmétique des valeurs de fonctions modulaires. In: Sémi-naire Bourbaki (1996/97), exp. 824, Astérisque 245, 3, 105-140 (1997) Zbl 0908.11029 MR 1627109 · Zbl 0908.11029
[34] Waterhouse, W. C.: Introduction to Affine Group Schemes. Grad. Texts in Math. 66, Springer, New York (1979) Zbl 0442.14017 MR 547117 · Zbl 0442.14017
[35] Wibmer, M.: Almost-simple affine difference algebraic groups. Math. Z. 299, 473-526 (2021) Zbl 1475.12013 MR 4311610 · Zbl 1475.12013
[36] Wibmer, M.: On the dimension of systems of algebraic difference equations. Adv. Appl. Math. 123, art. 102136, 34 pp. (2021) Zbl 1468.12005 MR 4178936 · Zbl 1468.12005
[37] Wibmer, M.: Finiteness properties of affine difference algebraic groups. Int. Math. Res. Notices 2022, 506-555 Zbl 07458275 MR 4366025 · Zbl 1498.12005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.