×

The four exponentials problem and Schanuel’s conjecture. (English) Zbl 1543.11060

Morel, Jean-Michel (ed.) et al., Mathematics going forward. Collected mathematical brushstrokes. Cham: Springer. Lect. Notes Math. 2313, 579-592 (2023).
The paper surveys some well-known conjectures and results in transcendental number theory involving exponential and logarithmic functions and their \(p\)-adic counterparts. In particular, Schanuel’s conjecture, Leopoldt’s conjecture, the four exponential conjecture, the six exponential theorem, and the five exponential theorem (and strong variants of the last three) are reviewed.
I should add that I find the author’s writing style a little odd. For instance, when referring to some major open problems in transcendence theory, which are considered out of reach by experts, they write “it is still open” or “it is not yet proved”. At the end it is written that “This original point of view of D. Roy suggests a promising approach to proving Schanuel’s conjecture.”
For the entire collection see [Zbl 1515.01005].

MSC:

11J81 Transcendence (general theory)
Full Text: DOI

References:

[1] L. Alaoglu and P. Erdős. On highly composite and similar numbers. Trans. Am. Math. Soc.56, 448-469 (1944). https://doi.org/10.2307/1990319; http://msp.org/idx/zbl/03099757; http://msp.org/idx/mr/0011087 · Zbl 0061.07903
[2] Y. Amice and J. Fresnel. Fonction zêta \(p\)-adique des corps de nombres abéliens réels. Acta Arith.20, 353-384 (1972). https://doi.org/10.4064/aa-20-4-353-384; http://msp.org/idx/zbl/03344662; http://msp.org/idx/mr/0337898 · Zbl 0217.04303
[3] J. Ax. On the units of an algebraic number field. Ill. J. Math.9, 584-589 (1965). https://doi.org/10.1215/ijm/1256059299; http://msp.org/idx/zbl/03214676; http://msp.org/idx/mr/0181630 · Zbl 0132.28303
[4] A. Baker. Linear forms in the logarithms of algebraic numbers. Mathematika13, 204-216 (1966). https://doi.org/10.1112/S0025579300003971; http://msp.org/idx/zbl/03257537; http://msp.org/idx/mr/0220680 · Zbl 0161.05201
[5] W.D Brownawell. The algebraic independence of certain numbers related by the exponential function. J. Number Theory6, 22-31 (1974). https://doi.org/10.1016/0022-314X(74)90005-5; http://msp.org/idx/zbl/03432369; http://msp.org/idx/mr/0337804 · Zbl 0275.10020
[6] A. Brumer. On the units of algebraic number fields. Mathematika14, 121-124 (1967). https://doi.org/10.1112/S0025579300003703; http://msp.org/idx/zbl/03272326; http://msp.org/idx/mr/0220694 · Zbl 0171.01105
[7] F. Calegari and B. Mazur. Nearly ordinary Galois deformations over arbitrary number fields. J. Inst. Math. Jussieu8(1), 99-177 (2009). https://doi.org/10.1017/S1474748008000327; http://msp.org/idx/zbl/1211.11065; http://msp.org/idx/mr/2461903 · Zbl 1211.11065
[8] M. Emsalem. Sur les idéaux dont l’image par l’application d’Artin dans une \(\mathbb{Z}_p\)-extension est triviale. J. reine angew. Math.382, 181-198 (1987). https://doi.org/10.1515/crll.1987.382.181; http://msp.org/idx/zbl/04006374; http://msp.org/idx/mr/0921171 · Zbl 0621.12008
[9] M. Emsalem, H.H. Kisilevsky and D.B. Wales. Indépendance linéaire sur \(\overline{\mathbb{Q}}\) de logarithmes \(p\)-adiques de nombres algébriques et rang \(p\)-adique du groupe des unités d’un corps de nombres. J. Number Theory19, 384-391 (1984). https://doi.org/10.1016/0022-314X(84)90079-9; http://msp.org/idx/zbl/03871495; http://msp.org/idx/mr/0769790 · Zbl 0547.12003
[10] J. Fresnel. Rang \(p\)-adique du groupe des unités d’un corps de nombres. In: Séminaire de théorie des nombres de Bordeaux (1968-1969), Exposé no. 9, pp. 1-18. http://eudml.org/doc/275157; http://www.numdam.org/item/STNB_1968-1969____A9_0/; http://msp.org/idx/zbl/03437276 · Zbl 0278.12003
[11] A.O. Gel’fond. Transcendental and algebraic numbers. Moskva: Gosudarstv. Izdat. Tekhn.-Teor. Lit., 224 pages (1952). (English. Russian original) New York: Dover Publications (1960). http://msp.org/idx/zbl/03074959; http://msp.org/idx/zbl/0090.26103; http://msp.org/idx/mr/0057921; http://msp.org/idx/mr/0111736
[12] L. Ghidelli. Heights of multiprojective cycles and small value estimates in dimension two. Tesi di Laurea Magistrale, Università di Pisa (2015). https://etd.adm.unipi.it/theses/available/etd-06262015-164322/
[13] L. Ghidelli. Multigraded Koszul complexes, filter-regular sequences and lower bounds for the multiplicity of the resultant. Preprint (2019). https://doi.org/10.48550/arXiv.1912.04047
[14] G. Henniart. Représentationsℓ-adiques abéliennes. Théorie des nombres, Sémin. Delange-Pisot-Poitou, Paris 1980-81, Prog. Math. 22, 107-126, Birkhäuser, Boston, Mass (1982). http://msp.org/idx/zbl/03785011; http://msp.org/idx/mr/0693314 · Zbl 0498.12012
[15] J.-F. Jaulent. Sur l’indépendance \(ℓ\)-adique de nombres algébriques. J. Number Theory20, 149-158 (1985). https://doi.org/10.1016/0022-314X(85)90035-6; http://msp.org/idx/zbl/03910509; http://msp.org/idx/mr/0790777 · Zbl 0571.12007
[16] S. Kanemitsu and M. Waldschmidt. Matrices of finite abelian groups, finite Fourier transform and codes. In: Number theory. Arithmetic in Shangri-La. Proceedings of the 6th China-Japan seminar held at Shanghai Jiao Tong University, Shanghai, China, August 15-17, 2011, pp. 90-106, Hackensack, NJ: World Scientific (2013). https://doi.org/10.1142/9789814452458_0005; http://msp.org/idx/zbl/06296818; http://msp.org/idx/mr/3089011 · Zbl 1331.20003
[17] S. Lang. Introduction to transcendental numbers. Addison-Wesley Series in Mathematics VI, 105 pages., Reading, Mass. Addison-Wesley Publishing Company (1966). Collected papers. Volume I: 1952-1970, New York, NY: Springer (2000). http://msp.org/idx/zbl/03232021; http://msp.org/idx/mr/0214547; http://msp.org/idx/zbl/01467752; http://msp.org/idx/mr/3087336 · Zbl 0144.04101
[18] M. Laurent. Rang \(p\)-adique d’unités et action de groupes. J. reine angew. Math.399, 81-108 (1989). https://doi.org/10.1515/crll.1989.399.81; http://msp.org/idx/zbl/04089664; http://msp.org/idx/mr/1004134 · Zbl 0666.12001
[19] M. Laurent. Rang \(p\)-adique d’unités: Un point de vue torique. In: Sémin. Théor. Nombres, Paris/Fr. 1987-88, Prog. Math. 81, pp. 131-146 (1990), Birkhäuser, Boston, Mass. (1990). http://msp.org/idx/zbl/04212167; http://msp.org/idx/mr/MR1042768 · Zbl 0733.11040
[20] M. Laurent. Sur quelques résultats récents de transcendance. Exposés présentés aux seizièmes journées arithmétiques, Luminy, France, 17-21 juillet 1989, pp. 209-230, Paris: Société Mathématique de France, Astérisque No. 198-200 (1991). https://smf.emath.fr/node/41992; http://msp.org/idx/zbl/00065929; http://msp.org/idx/mr/1144324 · Zbl 0762.11027
[21] H.-W. Leopoldt. Zur Arithmetik in abelschen Zahlkörpern. J. reine angew. Math.209, 54-71 (1962). https://doi.org/10.1515/crll.1962.209.54; http://msp.org/idx/zbl/03323990; http://msp.org/idx/mr/0139602 · Zbl 0204.07101
[22] A. Maksoud. On Leopoldt’s and Gross’s defects for Artin representations. Preprint (2022). https://doi.org/10.48550/arXiv.2201.08203
[23] Ngoc Ai Van Nguyen. A refined criterion for Schanuel’s conjecture. Chamchuri J. Math.1(2), 25-29 (2009). http://www.math.sc.chula.ac.th/cjm/sites/default/files/02-2-CJM2009-013-GP.pdf; http://msp.org/idx/zbl/06149549; http://msp.org/idx/mr/3151096 · Zbl 1276.11125
[24] Ngoc Ai Van Nguyen and D. Roy. A small value estimate in dimension two involving translations by rational points. Int. J. Number Theory12(5), 1273-1293 (2016). https://doi.org/10.1142/S1793042116500780; http://msp.org/idx/zbl/06589277; http://msp.org/idx/mr/3498626 · Zbl 1369.11056
[25] K. Ramachandra. Contributions to the theory of transcendental numbers. I, II. Acta Arith.14, 65-72, 73-88 (1968). https://doi.org/10.4064/aa-14-1-65-72; http://msp.org/idx/zbl/03281860; http://msp.org/idx/mr/0224566 · Zbl 0176.33101
[26] D. Roy. Matrices dont les coefficients sont des formes linéaires. In: Sémin. Théor. Nombres, Paris/Fr. 1987-88, Prog. Math. 81, pp. 273-281, Birkhäuser, Boston, Mass. (1990). http://msp.org/idx/zbl/04171028; http://msp.org/idx/mr/1042774 · Zbl 0712.11042
[27] D. Roy. Transcendance et questions de répartition dans les groupes algébriques. In: Approximations diophantiennes et nombres transcendants. Comptes-rendus du colloque tenu au C.I.R.M. de Luminy, France, 18-22 Juin 1990 (pp. 249-274), Berlin: de Gruyter (1992). http://msp.org/idx/zbl/00124357; http://msp.org/idx/mr/1176534 · Zbl 0763.11031
[28] D. Roy. Matrices whose coefficients are linear forms in logarithms. J. Number Theory41(1), 22-47 (1992). https://doi.org/10.1016/0022-314X(92)90081-Y; http://msp.org/idx/zbl/00039713; http://msp.org/idx/mr/1161143 · Zbl 0763.11030
[29] D. Roy. On the \(v\)-adic independence of algebraic numbers. In: Advances in number theory. The proceedings of the third conference of the Canadian Number Theory Association, held at Queen’s University, Kingston, Canada, August 18-24, 1991, pp. 441-451, Oxford: Clarendon Press (1993). http://msp.org/idx/zbl/00409845; http://msp.org/idx/mr/1368440 · Zbl 0788.11051
[30] D. Roy. Points whose coordinates are logarithms of algebraic numbers on algebraic varieties. Acta Math.175(1), 49-73 (1995). https://doi.org/10.1007/BF02392486; http://msp.org/idx/zbl/00807537; http://msp.org/idx/mr/1353017 · Zbl 0833.11031
[31] D. Roy. An arithmetic criterion for the values of the exponential function. Acta Arith.97(2), 183-194 (2001). https://doi.org/10.4064/aa97-2-6; http://msp.org/idx/zbl/01605193; http://msp.org/idx/mr/1824984 · Zbl 0981.11025
[32] D. Roy. Une formule d’interpolation en deux variables. J. Théor. Nombres Bordeaux.13(1), 315-323 (2001). https://doi.org/10.5802/jtnb.324; http://msp.org/idx/zbl/02081368; http://msp.org/idx/mr/1838090 · Zbl 1053.11063
[33] D. Roy. Interpolation formulas and auxiliary functions. J. Number Theory 94(2), 248-285 (2002). https://doi.org/10.1006/jnth.2000.2595; http://msp.org/idx/zbl/01809761; http://msp.org/idx/mr/1916273 · Zbl 1010.11039
[34] D. Roy. Small value estimates for the multiplicative group. Acta Arith.135(4), 357-393 (2008). https://doi.org/10.4064/aa135-4-5; http://msp.org/idx/zbl/05376856; http://msp.org/idx/mr/2465718 · Zbl 1214.11087
[35] D. Roy. Small value estimates for the additive group. Int. J. Number Theory6(4), 919-956 (2010). https://doi.org/10.1142/S179304211000323X; http://msp.org/idx/zbl/05758252; http://msp.org/idx/mr/2661291 · Zbl 1200.11056
[36] D. Roy. A small value estimate for \(\mathbb{G}_a\times \mathbb{G}_m\). Mathematika59(2), 333-363 (2013). https://doi.org/10.1112/S002557931200112X; http://msp.org/idx/zbl/06193344; http://msp.org/idx/mr/3081775 · Zbl 1335.11060
[37] D. Roy and M. Waldschmidt. Quadratic relations between logarithms of algebraic numbers. Proc. Japan Acad. Ser. A71(7), 151-153 (1995). https://doi.org/10.3792/pjaa.71.151; http://msp.org/idx/zbl/00897674; http://msp.org/idx/mr/1363903 · Zbl 0860.11040
[38] T. Schneider. Einführung in die transzendenten Zahlen. Die Grundlehren der Mathematischen Wissenschaften. Band 81. Berlin-Göttingen-Heidelberg: Springer-Verlag, 150 pp. (1957). Introduction aux nombres transcendants. Translated by P. Eymard Paris: Gauthier-Villars. viii, 151 pp. (1959). http://msp.org/idx/zbl/03160414; http://msp.org/idx/mr/0106890; http://msp.org/idx/zbl/0077.04703; http://msp.org/idx/mr/0086842 · Zbl 0077.04703
[39] J.-P. Serre. Dépendance d’exponentielles \(p\)-adiques. Théorie des Nombres, Sém. Delange-Pisot-Poitou7 (1965/66), No. 15, 1-14 (1967). https://eudml.org/doc/110667; http://www.numdam.org/item/?id=SDPP_1965-1966__7_2_A4_0; http://msp.org/idx/zbl/03401001 · Zbl 0254.10033
[40] J.-P. Serre. Abelianℓ-adic representations and elliptic curves (Vol. 7). Wellesley, MA: A K Peters (1968). (1997; reprint of the 1989 edition. First edition 1968.). https://doi.org/10.1201/9781439863862; http://msp.org/idx/zbl/01101830; http://msp.org/idx/mr/0263823; http://msp.org/idx/zbl/0186.25701; http://msp.org/idx/mr/1484415
[41] M. Waldschmidt. Gruppendeterminant. In: Séminaire de théorie des nombres de Bordeaux (1971), Exposé no. 1, pp. 1-10 (1971). https://eudml.org/doc/275172; http://www.numdam.org/item/STNB_1971____A1_0/; http://msp.org/idx/zbl/0293.20005
[42] M. Waldschmidt. Solution du huitième problème de Schneider. J. Number Theory5, 191-202 (1973). https://doi.org/10.1016/0022-314X(73)90044-9; http://msp.org/idx/zbl/03412740; http://msp.org/idx/mr/0321884 · Zbl 0262.10021
[43] M. Waldschmidt. Nombres transcendants. Lect. Notes Math. 402, Springer (1974). https://doi.org/10.1007/BFb0065320; http://msp.org/idx/zbl/03472160; http://msp.org/idx/mr/0360483 · Zbl 0302.10030
[44] M. Waldschmidt. Transcendance et exponentielles en plusieurs variables. Invent. Math.63, 97-127 (1981). https://doi.org/10.1007/BF01389195; http://msp.org/idx/zbl/03710265; http://msp.org/idx/mr/0608530 · Zbl 0454.10020
[45] M. Waldschmidt. Sur certains caractères du groupe des classes d’idèles d’un corps du nombres. In: Théorie des nombres, Sémin. Delange-Pisot-Poitou, Paris 1980-81, Prog. Math. 22, 323-335, Birkhäuser, Boston, Mass. (1982). http://msp.org/idx/zbl/03777623; http://msp.org/idx/mr/693328 · Zbl 0494.12007
[46] M. Waldschmidt. A lower bound for the \(p\)-adic rank of the units of an algebraic number field. In: Topics in classical number theory, Colloq. Budapest 1981, Vol. II, Colloq. Math. Soc. János Bolyai 34, 1617-1650 (1984). http://msp.org/idx/zbl/03859250; http://msp.org/idx/mr/0781200 · Zbl 0541.12003
[47] M. Waldschmidt. On the transcendence methods of Gel’fond and Schneider in several variables. In: New advances in transcendence theory, Proc. Symp., Durham/UK 1986, pp. 375-398, Cambridge University Press (1988). http://msp.org/idx/zbl/04077344; http://msp.org/idx/mr/0972013 · Zbl 0659.10035
[48] M. Waldschmidt. Dependence of logarithms of algebraic points. In: Number theory. Vol. II. Diophantine and algebraic, Proc. Conf., Budapest/Hung. 1987, Colloq. Math. Soc. János Bolyai 51, pp. 1013-1035, North-Holland Publishing Company, Budapest (1990). http://msp.org/idx/zbl/04175044; http://msp.org/idx/mr/1058258 · Zbl 0714.11043
[49] M. Waldschmidt. Diophantine approximation on linear algebraic groups. Transcendence properties of the exponential function in several variables. Grundlehren der Mathematischen Wissenschaften (Vol. 326), Berlin: Springer (2000). https://doi.org/10.1007/978-3-662-11569-5; http://msp.org/idx/zbl/01467843; http://msp.org/idx/mr/1756786 · Zbl 0944.11024
[50] M. Waldschmidt. Variations on the six exponentials theorem. In: Algebra and number theory. Proceedings of the silver jubilee conference, Hyderabad, India, December 11-16, 2003, pp. 338-355, New Delhi: Hindustan Book Agency (2005). http://msp.org/idx/zbl/02226145; http://msp.org/idx/mr/2193363 · Zbl 1176.11033
[51] M. Waldschmidt. Further variations on the six exponentials theorem. Hardy-Ramanujan J.28, 1-9 (2005). https://doi.org/10.46298/hrj.2005.86; http://msp.org/idx/zbl/05054470; http://msp.org/idx/mr/2192074 · Zbl 1116.11054
[52] M. Waldschmidt. Questions de transcendance: grandes conjectures, petits progrès. In: Transcendance et irrationalité, pp. 49-67, Société Mathématique de France, Journées Annuelles 2012, Paris (2012). http://msp.org/idx/zbl/06616539; http://msp.org/idx/mr/3467286 · Zbl 1362.11068
[53] M. Waldschmidt. Six Exponentials Theorem - Irrationality. Resonance: Journal of Science Education27(4), 599-606 (2022). Translation of: Le théorème des six exponentielles restreint à l’irrationalité. Revue de la filière mathématiques RMS, avril 2021, 131ème année, N.3, 2020-2021, 26-33 (2021). https://doi.org/10.1007/s12045-022-1351-0
[54] A. Weil. On a certain type of characters of the idèle-class group of an algebraic number-field. In: Proc. internat. Sympos. algebraic number theory, Tokyo & Nikko Sept. 1955, pp. 1-7. Œuvres scientifiques. Collected papers. Vol. II (1951-1964). Reprint of the 2009/1979 edition. Springer Collected Works in Mathematics, pp. 255-261 (1955). http://msp.org/idx/zbl/03122464; http://msp.org/idx/mr/0083523; http://msp.org/idx/zbl/1317.01045; http://msp.org/idx/mr/3309921
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.