×

Static output feedback sliding mode control under rice fading channel: an interval type-2 fuzzy modelling method. (English) Zbl 1542.93136

Summary: This work investigates the static output feedback sliding mode control (SMC) design problem of uncertain non-linear systems with Rice fading channels. The interval type-2 Takagi-Sugeno fuzzy modelling approach is exploited to express non-linear dynamics with uncertain parameters. As the wireless network between the sensor and the controller may be subject to channel fading, the premise variables are probably altered during their propagations. In such cases, a key issue is to synthesise a desired SMC law for stabilising the controlled non-linear systems. To this end, new membership functions are constructed via employing the fading measurements and the desired SMC law are subsequently synthesised. To deal with the disturbances in communication channels, the notion of input-to-state stable in probability (ISSiP) is utilised and sufficient criteria are deduced to guarantee the ISSiP of the resultant closed-loop systems and the reachability of the prescribed sliding surface. Finally, a simulation example illustrates the designed control strategy.
© 2020 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology

MSC:

93B52 Feedback control
93B12 Variable structure systems
93C42 Fuzzy control/observation systems
93C10 Nonlinear systems in control theory
93D25 Input-output approaches in control theory
93E15 Stochastic stability in control theory
Full Text: DOI

References:

[1] Zhang, S., Wang, Z., Ding, D., et al.: ‘A gain‐scheduling approach to nonfragile \(H_{\operatorname{\infty}}\) fuzzy control subject to fading channels’, IEEE Trans. Fuzzy Syst., 2018, 26, (1), pp. 142-154
[2] Su, L., Chesi, G.: ‘On the design of output feedback controllers for LTI systems over fading channels’, IEEE Trans. Autom. Control, 2018, 63, (5), pp. 1503-1508 · Zbl 1395.93485
[3] Xiao, N., Niu, Y., Xie, L.: ‘State feedback stabilization over finite‐state fading channels’, Asian J. Control, 2016, 18, (3), pp. 1052-1061 · Zbl 1348.93223
[4] Chen, W., Zou, Y., Xiao, N., et al.: ‘Quantised feedback stabilisation of LTI systems over partly unknown markov fading channels’, Int. J. Syst. Sci., 2017, 48, (10), pp. 2128-2136 · Zbl 1371.93161
[5] Song, J., Niu, Y., Wang, S.: ‘Robust finite‐time dissipative control subject to randomly occurring uncertainties and stochastic fading measurements’, J. Frankl. Inst., 2017, 354, (9), pp. 3706-3723 · Zbl 1367.93705
[6] Zhao, D., Wang, Z., Ding, D., et al.: ‘\(H_{\operatorname{\infty}}\) PID control with fading measurements: the output‐feedback case’, IEEE Trans. Syst., Man, Cybern., Syst., 2020, 50, (6), pp. 2170-2180
[7] Zhang, Y., Wang, Z., Zou, L., et al.: ‘Event‐based finite‐time filtering for multirate systems with fading measurements’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (3), pp. 1431-1441
[8] Zhang, S., Wang, Z., Ding, D., et al.: ‘Nonfragile \(H_{\operatorname{\infty}}\) fuzzy filtering with randomly occurring gain variations and channel fadings’, IEEE Trans. Fuzzy Syst., 2016, 24, (3), pp. 505-518
[9] Chen, Y., Wang, Z., Yuan, Y., et al.: ‘Distributed \(H_{\operatorname{\infty}}\) filtering for switched stochastic delayed systems over sensor networks with fading measurements’, IEEE Trans. Cybern., 2020, 50, (1), pp. 2-14
[10] Cao, Z., Niu, Y., Lam, H.K., et al.: ‘Sliding mode control of Markovian jump fuzzy systems: a dynamic event‐triggered method’, IEEE Trans. Fuzzy Syst., doi: 10.1109/TFUZZ.2020.3009729
[11] Gunasekaran, N., Joo, Y.H.: ‘Stochastic sampled‐data controller for T‐S fuzzy chaotic systems and its applications’, IET Control Theory Appl., 2019, 13, (12), pp. 1834-1843 · Zbl 1432.93365
[12] Vinodkumar, A., Prakash, M., Joo, Y.H.: ‘Impulsive observer‐based output control for PMSG‐based wind energy conversion system’, IET Control Theory Appl., 2019, 13, (13), pp. 2056-2064 · Zbl 07907000
[13] Pan, Y., Du, P., Xue, H., et al.: ‘Singularity‐free fixed‐time fuzzy control for robotic systems with user‐defined performance’, IEEE Trans. Fuzzy Syst., doi: 10.1109/TFUZZ.2020.2999746
[14] Du, P., Pan, Y., Li, H., et al.: ‘Nonsingular finite‐time event‐triggered fuzzy control for large‐scale nonlinear systems’, IEEE Trans. Fuzzy Syst., doi: 10.1109/TFUZZ.2020.2992632
[15] Wu, Y., Pan, Y., Chen, M., et al.: ‘Quantized adaptive finite‐time bipartite NN tracking control for stochastic multiagent systems’, IEEE Trans. Cybern., doi: 10.1109/TCYB.2020.3008020
[16] Zhang, K., Jiang, B., Shi, P., et al.: ‘Analysis and design of robust \(H_{\operatorname{\infty}}\) fault estimation observer with finite‐frequency specifications for discrete‐time fuzzy systems’, IEEE Trans. Cyber., 2015, 45, (7), pp. 1225-1235
[17] Vadivel, R., Joo, Y.H.: ‘Finite‐time sampled‐data fuzzy control for a non‐linear system using passivity and passification approaches and its application’, IET Control Theory Appl., 2020, 14, (8), pp. 1033-1045 · Zbl 07907176
[18] Ji, W., Qiu, J., Lam, H.K.: ‘A new design of output feedback sliding mode controller for T‐S fuzzy‐affine systems’, Asian J. Control, doi:10.1002/asjc.2323 · Zbl 07886791
[19] Song, J., Niu, Y., Lam, J., et al.: ‘Fuzzy remote tracking control for randomly varying local nonlinear models under fading and missing measurements’, IEEE Trans. Fuzzy Syst., 2018, 26, (3), pp. 1125-1137
[20] Lam, H.K., Li, H., Deters, C., et al.: ‘Control design for interval type‐2 fuzzy systems under imperfect premise matching’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 956-968
[21] Xiao, B., Lam, H.K., Yu, Y., et al.: ‘Sampled‐data output‐feedback tracking control for interval type‐2 polynomial fuzzy systems’, IEEE Trans. Fuzzy Syst., 2020, 28, (3), pp. 424-433
[22] Xiao, B., Lam, H.K., Li, H.: ‘Stabilization of interval type‐2 polynomial‐fuzzy‐model‐based control systems’, IEEE Trans. Fuzzy Syst., 2017, 25, (1), pp. 205-217
[23] Xiao, B., Lam, H., Zhou, H., et al.: ‘Analysis and design of interval type‐2 polynomial‐fuzzy‐Model‐Based networked tracking control systems’, IEEE Trans. Fuzzy Syst., doi: 10.1109/TFUZZ.2020.3006587
[24] Zhang, Z., Niu, Y., Song, J.: ‘Input‐to‐state stabilization of interval type‐2 fuzzy systems subject to cyber attacks: an observer‐based adaptive sliding mode approach’, IEEE Trans. Fuzzy Syst., 2020, 28, (1), pp. 190-203
[25] Lam, H.K., Seneviratne, L.D.: ‘Stability analysis of interval type‐2 fuzzy‐model‐based control systems’, IEEE Trans. Syst., Man, Cybern., Cybern., 2008, 38, (3), pp. 617-628
[26] Xiao, B., Lam, H.K., Zhong, Z., et al.: ‘Membership‐function‐dependent stabilization of event‐triggered interval type‐2 polynomial fuzzy‐model‐based networked control systems’, IEEE Trans. Fuzzy Syst., 2020, 28, (12), pp. 3171-3180
[27] Song, J., Niu, Y.: ‘Dynamic event‐triggered sliding mode control: dealing with slow sampling singularly perturbed systems’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2020, 67, (6), pp. 1079-1083
[28] Zhao, H., Niu, Y., Zhao, J.: ‘Event‐triggered sliding mode control of uncertain switched systems under denial‐of‐service attacks’, J. Frankl. Inst., 2019, 356, (18), pp. 11414-11433 · Zbl 1427.93050
[29] Zhao, H., Niu, Y., Jia, T.: ‘Security control of cyber‐physical switched systems under round‐robin protocol: input‐to‐state stability in probability’, Inf. Sci., 2020, 508, pp. 121-134 · Zbl 1472.93159
[30] Cao, Z., Niu, Y., Zou, Y.: ‘Adaptive neural sliding mode control or singular semi‐markovian jump systems against actuator attacks’, IEEE Trans. Syst., Man, Cybern., Syst., doi: 10.1109/TSMC.2019.2898428
[31] Cao, Z., Niu, Y., Song, J.: ‘Finite‐time sliding mode control of Markovian jump cyber‐physical systems against randomly occurring injection attacks’, IEEE Trans. Autom. Control, 2020, 65, (3), pp. 1264-1271 · Zbl 1533.93672
[32] Wang, J., Zhang, L., Chen, M.Z.Q., et al.: ‘Hyperplane design for discrete‐time sliding mode control with event‐trigger strategy and disturbance observer’, IET Control Theory Appl., 2020, 14, (8), pp. 1003-1011 · Zbl 07907173
[33] Xu, J., Fridman, E., Fridman, L.M., et al.: ‘Static sliding mode control of systems with arbitrary relative degree by using artificial delays’, IEEE Trans. Autom. Control, 2020, 65, (12), pp. 5464-5471 · Zbl 1536.93140
[34] Li, J., Niu, Y.: ‘Sliding mode control subject to rice channel fading’, IET Control Theory Appl., 2019, 13, (16), pp. 2529-2537
[35] Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (Wiley, New York, 2001)
[36] Zhang, Z., Su, S., Niu, Y.: ‘Dynamic event‐triggered control for interval type‐2 fuzzy systems under fading channel’, IEEE Trans. Cybern., doi: 10.1109/TCYB.2020.2996296
[37] Sheng, L., Wang, Z., Wang, W., et al.: ‘Output‐feedback control for nonlinear stochastic systems with successive packet dropouts and uniform quantization effects’, IEEE Trans. Syst., Man, Cybern., Syst., 2017, 47, (7), pp. 1181-1191
[38] Narimani, M., Lam, H.K.: ‘Relaxed LMI‐based stability conditions for takagi‐sugeno fuzzy control systems using regional‐membership‐function‐shape‐dependent analysis approach’, IEEE Trans. Fuzzy Syst., 2009, 17, (5), pp. 1221-1228
[39] Sala, A., Arino, C.: ‘Relaxed stability and performance conditions for takagi‐sugeno fuzzy systems with knowledge on membership function overlap’, IEEE Trans. Syst., Man, Cybern. B, Cybern., 2007, 37, (3), pp. 727-732
[40] Lam, H.K., Narimani, M.: ‘Quadratic‐stability analysis of fuzzy‐model‐based control systems using staircase membership functions’, IEEE Trans. Fuzzy Syst., 2010, 18, (1), pp. 125-137
[41] Lam, H.K.: ‘Polynomial fuzzy‐model‐based control systems: stability analysis via piecewise‐linear membership functions’, IEEE Trans. Fuzzy Syst., 2011, 19, (3), pp. 588-593
[42] Lam, H.K., Liu, C., Wu, L., et al.: ‘Polynomial fuzzy‐model‐based control systems: stability analysis via approximated membership functions considering sector nonlinearity of control input’, IEEE Trans. Fuzzy Syst., 2015, 23, (6), pp. 2202-2214
[43] Qiu, J., Feng, G., Gao, H.: ‘Fuzzy‐model‐based piecewise \(H_{\operatorname{\infty}}\) static‐output‐feedback controller design for networked nonlinear systems’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 919-934
[44] Tang, X., Deng, L., Yu, J., et al.: ‘Output feedback predictive control of interval type‐2 T‐S fuzzy systems with Markovian packet loss’, IEEE Trans. Fuzzy Syst., 2018, 26, (4), pp. 2450-2459
[45] Sklar, B.: ‘Rayleigh fading channels in mobile digital communication systems. I. characterization’, IEEE Commun. Mag., 1997, 35, (7), pp. 90-100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.