×

Identification of dominant subspaces for model reduction of structured parametric systems. (English) Zbl 1542.93049

Summary: In this paper, we discuss a novel model reduction framework for linear structured dynamical systems. The transfer functions of these systems are assumed to have a special structure, for example, coming from second-order linear systems or time-delay systems, and they may also have parameter dependencies. Firstly, we investigate the connection between classic interpolation-based model reduction methods with the reachability and observability subspaces of linear structured parametric systems. We show that if enough interpolation points are taken, the projection matrices of interpolation-based model reduction encode these subspaces. Consequently, we are able to identify the dominant reachable and observable subspaces of the underlying system. Based on this, we propose a new model reduction algorithm combining these features and leading to reduced-order systems. Furthermore, we discuss computational aspects of the approach and its applicability to a large-scale setting. We illustrate the efficiency of the proposed approach with several numerical large-scale benchmark examples.
© 2024 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

MSC:

93B11 System structure simplification
93C05 Linear systems in control theory
93B03 Attainable sets, reachability
93B07 Observability
93B05 Controllability

References:

[1] FengL, BennerP. Model order reduction for systems with non‐rational transfer function arising in computational electromagnetics. In: RoosJ (ed.), CostaLRJ (ed.), eds. Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry. Vol 14. Springer‐Verlag; 2010:512‐522.
[2] AntoulasAC. Approximation of Large‐Scale Dynamical Systems. SIAM Publications; 2005. · Zbl 1112.93002
[3] BennerP, MehrmannV, SorensenDC. Dimension Reduction of Large‐Scale Systems. Lect. Notes Comput. Sci. Eng Vol 45. Springer‐Verlag, Berlin/Heidelberg, Germany; 2005.
[4] BennerP, SaakJ. Efficient balancing‐based MOR for large‐scale second‐order systems. Math. Comput. Model. Dyn. Syst.2011;17(2):123‐143. doi:10.1080/13873954.2010.540822 · Zbl 1221.93039
[5] ChahlaouiY, LemonnierD, VandendorpeA, Van DoorenP. Second‐order balanced truncation. Linear Algebra Appl.2006;415(2-3):373‐384. doi:10.1016/j.laa.2004.03.032 · Zbl 1102.93008
[6] EidR, SalimbahramiB, LohmannB, RudnyiEB, KorvinkJG. Parametric order reduction of proportionally damped second‐order systems. Sensors Mater. 2007;19(3):149‐164.
[7] ReisT, StykelT. Balanced truncation model reduction of second‐order systems. Math Comput Model Dyn Syst. 2008;14(5):391‐406. · Zbl 1151.93010
[8] JarlebringE, DammT, MichielsW. Model reduction of time‐delay systems using position balancing and delay Lyapunov equations. Math Control Signals Syst. 2013;25(2):147‐166. · Zbl 1272.93036
[9] PlischkeE. Transient Effects of Linear Dynamical Systems. PhD thesis. Universität Bremen; 2005. · Zbl 1325.37001
[10] BennerP, GugercinS, WillcoxK. A survey of projection‐based model reduction methods for parametric dynamical systems. SIAM Rev. 2015;57(4):483‐531. doi:10.1137/130932715 · Zbl 1339.37089
[11] BreitenT. Structure‐preserving model reduction for integro‐differential equations. SIAM J Cont Optim. 2016;54(6):2992‐3015. doi:10.1137/15M1032296 · Zbl 1350.93025
[12] AntoulasAC, BeattieCA, GugercinS. Interpolatory model reduction of large‐scale dynamical systems. In: MohammadpourJ (ed.), GrigoriadisKM (ed.), eds. Efficient Modeling and Control of Large‐Scale Systems. Springer; 2010:3‐58. doi:10.1007/978‐1‐4419‐5757‐3_1 · Zbl 1229.65103
[13] BeattieCA, GugercinS. Interpolatory projection methods for structure‐preserving model reduction. Syst Control Lett. 2009;58(3):225‐232. doi:10.1016/j.sysconle.2008.10.016 · Zbl 1159.93317
[14] SchulzeP, UngerB, BeattieC, GugercinS. Data‐driven structured realization. Linear Algebra Appl.2018;537:250‐286. · Zbl 1373.93087
[15] HundM, MitchellT, MlinarićP, SaakJ. Optimization‐based parametric model order reduction via
[( {\mathcal{H}}_2{\otimes}_2 \]\) first‐order necessary conditions. SIAM J. Sci. Comput.2022;44(3):A1554‐A1578. doi:10.1137/21M140290X · Zbl 1492.65227
[16] MayoAJ, AntoulasAC. A framework for the solution of the generalized realization problem. Linear Algebra Appl.2007;425(2‐3):634‐662. · Zbl 1118.93029
[17] BaurU, BeattieCA, BennerP, GugercinS. Interpolatory projection methods for parameterized model reduction. SIAM J Sci Comput. 2011;33(5):2489‐2518. · Zbl 1254.93032
[18] DullerudGE, PaganiniF. A Course in Robust Control Theory: a Convex Approach. Vol 36. Springer Science & Business Media; 2013.
[19] AndersonBDO, AntoulasAC. Rational interpolation and state‐variable realizations. Linear Algebra Appl. 1990;137(138):479‐509. · Zbl 0715.93019
[20] FuhrmannPA. Exact controllability and observability and realization theory in Hilbert space. J Math Anal Appl. 1976;53(2):377‐392. · Zbl 0342.93009
[21] VidyasagarM. On the controllability of infinite‐dimensional linear systems. J Opt Th Appl. 1970;6(2):171‐173. · Zbl 0185.23502
[22] CurtainRF, ZwartH. An Introduction to Infinite‐Dimensional Linear Systems Theory. Vol 21. Springer; 2012.
[23] KamenEW. Lectures on algebraic system theory: linear systems over rings. Tech Rep NASA Contractor Report. 1978:3016.
[24] KamenEW. Linear systems over rings: from R. E. Kalman to the present. Math. System Theory. Springer; 1991:311‐324. · Zbl 0758.93019
[25] LeeE, OlbrotA. Observability and related structural results for linear hereditary systems. Internat J Control. 1981;34(6):1061‐1078. · Zbl 0531.93015
[26] MorseAS. Ring models for delay‐differential systems. Automatica. 1976;12(5):529‐531. · Zbl 0345.93023
[27] SontagE. Linear systems over commutative rings: a survey. Ricerche di Automat. 1976;7(1):1‐34.
[28] GripenbergG, LondenS‐O, StaffansO. Volterra Integral and Functional Equations. Vol 34. Cambridge University Press; 1990. · Zbl 0695.45002
[29] WeissL. On the controllability of delay‐differential systems. SIAM J. Cont. Optim.1967;5(4):575‐587. · Zbl 0183.16402
[30] YiS, NelsonPW, UlsoyAG. Controllability and observability of systems of linear delay differential equations via the matrix Lambert W function. IEEE Trans Automat Contr. 2008;53(3):854‐860. · Zbl 1367.93084
[31] GallivanK, VandendorpeA, Van DoorenP. Model reduction of MIMO systems via tangential interpolation. SIAM J Matrix Anal Appl. 2004;26(2):328‐349. · Zbl 1078.41016
[32] GeorgievaI, HofreitherC. Greedy low‐rank approximation in Tucker format of solutions of tensor linear systems. J Comput Appl Math. 2019;358:206‐220. · Zbl 1415.65099
[33] KressnerD, SirkovićP. Truncated low‐rank methods for solving general linear matrix equations. Numer Lin Alg Appl. 2015;22(3):564‐583. · Zbl 1363.65075
[34] LeeK, ElmanHC, PowellCE, LeeD. Alternating energy minimization methods for multi‐term matrix equations. arXiv preprint arXiv:2006.08531.
[35] FengL, AntoulasAC, BennerP. Some a posteriori error bounds for reduced order modelling of (non‐)parametrized linear systems. Esaim: M2AN. 2017;51(6):2127‐2158. doi:10.1051/m2an/2017014 · Zbl 1382.37105
[36] MillerRW. Flow Measurement Engineering Handbook. McGraw‐Hill; 1996.
[37] The MORwiki Community. Anemometer, MORwiki-Model Order Reduction Wiki. 2018http://modelreduction.org/index.php/Anemometer
[38] MoosmannC, RudnyiE, GreinerA, KorvinkJ, HornungM. Parameter preserving model order reduction of a flow meter. Proc Nanotech. 2005;3:684‐687.
[39] MoosmannC. ParaMOR ‐ Model Order Reduction for Parameterized MEMS Applications, PhD thesis. Albert‐Ludwigs‐Universität Freiburg; 2007http://nbn‐resolving.de/urn:nbn:de:bsz:25‐opus‐39719
[40] The MORwiki Community. Modified gyroscope, MORwiki - Model Order Reduction Wiki. 2018http://modelreduction.org/index.php/Modified_Gyroscope
[41] FengL, BennerP. On error estimation for reduced‐order modeling of linear non‐parametric and parametric systems. ESAIM: Math Model Numer Anal. 2021;55(2):561‐594. doi:10.1051/m2an/2021001 · Zbl 1480.37086
[42] BennerP, GoyalP. Interpolation‐based model order reduction for polynomial systems. SIAM J. Sci. Comput.2021;43(1):A84‐A108. doi:10.1137/19M1259171 · Zbl 1458.93041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.