×

Temporal logic robustness for general signal classes. (English) Zbl 1542.93010

Proceedings of the 22nd ACM international conference on hybrid systems: computation and control, HSCC 2019, Montreal, Quebec, Canada, April 16–18, 2019. New York, NY: Association for Computing Machinery (ACM). 45-56 (2019).

MSC:

93A16 Multi-agent systems
03B44 Temporal logic
93B35 Sensitivity (robustness)

References:

[1] H. Abbas and G. Fainekos. 2013. Computing Descent Direction of MTL Robustness for Non-Linear Systems. In American Control Conference.
[2] Takumi Akazaki and Ichiro Hasuo. 2015. Time Robustness in MTL and Expressivity in Hybrid System Falsification. In Computer Aided Verification, Daniel Kroening and Corina S. Păsăreanu (Eds.). Springer International Publishing, Cham, 356-374. · Zbl 1381.68142
[3] Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit Juniwal, and Sanjit A. Seshia. 2015. Robust Online Monitoring of Signal Temporal Logic. In Runtime Verification, Ezio Bartocci and Rupak Majumdar (Eds.). Springer International Publishing, Cham, 55-70. · Zbl 1370.68199
[4] A. Dokhanchi, B. Hoxha, and G. Fainekos. 2014. Online Monitoring for Temporal Logic Robustness. In Proc. of Runtime Verification.
[5] Alexandre Donzé, Thomas Ferrère, and Oded Maler. 2013. Efficient Robust Monitoring for STL. In Computer Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 264-279.
[6] Alexandre Donzé and Oded Maler. 2010. Robust Satisfaction of Temporal Logic over Real-valued Signals. In Proceedings of the International Conference on Formal Modeling and Analysis of Timed Systems. · Zbl 1290.68071
[7] James George Dunham. 1986. Optimum Uniform Piecewise Linear Approximation of Planar Curves. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8 (1986), 67-75. 10.1109/TPAMI.1986.4767753
[8] G. Fainekos and G. Pappas. 2009. Robustness of temporal logic specifications for continuous-time signals. Theoretical Computer Science (2009). 10.1016/j.tcs.2009.06.021 · Zbl 1186.68287
[9] Georgios E. Fainekos and George J. Pappas. 2007. Robust Sampling for MITL Specifications. In Formal Modeling and Analysis of Timed Systems, Jean-François Raskin and P. S. Thiagarajan (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 147-162. · Zbl 1141.68464
[10] Michael W. Frazier. 1999. A Linear Algebra Introduction to Wavelets. Springer. · Zbl 0968.42021
[11] C.L. Frenzen, Tsutomu Sasao, and Jon T. Butler. 2010. On the number of segments needed in a piecewise linear approximation. J. Comput. Appl. Math. 234, 2 (2010), 437-446. 10.1016/j.cam.2009.12.035 · Zbl 1190.65024
[12] Stefan Jaksic, Ezio Bartocci, Radu Grosu, and Dejan Nickovic. 2018. An Algebraic Framework for Runtime Verification. arXiv:cs.LO/1802.03775
[13] R. Koymans. 1990. Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems 2, 4 (1990), 255-299. 10.1007/BF01995674
[14] Alois Kufner and Lars-Erik Persson. {n. d.}. Weighted Inequalities of Hardy Type. World Scientific.
[15] L. Lindemann and D. V. Dimarogonas. 2017. Robust motion planning employing signal temporal logic. In 2017 American Control Conference (ACC). 2950-2955.
[16] Medtronic. 2018. http://www.medtronic.com/us-en/patients/treatments-therapies/heart-monitors/our-monitors/reveal-linq-icm.html
[17] Knut Mørken and Martin Reimers. 2007. An unconditionally convergent method for computing zeros of splines and polynomials. Math. Comp 76, 258 (January 2007), 845-865. · Zbl 1120.41014
[18] Dejan Nickovic and Oded Maler. 2007. AMT: A Property-Based Monitoring Tool for Analog Systems. In FORMATS (LNCS), Vol. 4763. Springer, 304-319.
[19] Yash Vardhan Pant, Houssam Abbas, and Rahul Mangharam. 2017. Smooth operator: Control using the smooth robustness of temporal logic. In Control Technology and Applications (CCTA), 2017 IEEE Conference on. IEEE. · Zbl 1542.93010
[20] Yash Vardhan Pant, Houssam Abbas, Rhudii A Quaye, and Rahul Mangharam. 2018. Fly-by-logic: Control of multi-drone fleets with temporal logic objectives. In Proceedings of the 9th ACM/IEEE International Conference on Cyber-Physical Systems. IEEE Press. 10.1109/ICCPS.2018.00026 · Zbl 1542.93010
[21] Nima Roohi, Ramneet Kaur, James Weimer, Oleg Sokolsky, and Insup Lee. 2018. Parameter Invariant Monitoring for Signal Temporal Logic. In Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (HSCC ’18). ACM, New York, NY, USA, 187-196. 10.1145/3178126.3178140 · Zbl 1409.68174
[22] Larry L. Schumaker. 2007. Spline functions: basic theory. Cambridge University Press. · Zbl 1123.41008
[23] E. Sejdic, I. Djurovic, and L. Stankovic. 2008. Quantitative Performance Analysis of Scalogram as Instantaneous Frequency Estimator. IEEE Transactions on Signal Processing 56, 8 (Aug 2008), 3837-3845. 10.1109/TSP.2008.924856 · Zbl 1390.94402
[24] Roland X. Stroobandt, S. Serge Barold, and Alfons F. Sinnaeve. 2009. Implantable Cardioverter - Defibrillators Step by Step. Wiley.
[25] M. Unser. 2000. Sampling-50 years after Shannon. Proc. IEEE 88, 4 (April 2000), 569-587. · Zbl 1404.94028
[26] M. Unser and A. Aldroubi. 1994. A general sampling theory for nonideal acquisition devices. IEEE Transactions on Signal Processing 42, 11 (Nov 1994), 2915-2925. 10.1109/78.330352 · Zbl 0794.41024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.