×

Numerical analysis of linearly implicit Euler method for age-structured SIS model. (English) Zbl 1542.92147

Summary: In this paper, we consider a numerical threshold for a coupled age-structured SIS epidemic model. We deal with the existence, convergence and stability of a linearly implicit Euler method for an age-independent SIS model firstly. It is shown that the numerical processes replicate the global dynamical behaviors of SIS model for any time-step size. We continue analyzing an age-structured SIS model similarly by introducing the numerical total population \(p_j^n\) to overcome the coupling. With the help of Krein-Rutman’s theorem, the numerical basic reproduction numbers \(R_{\Delta t}^1\) and \(R_{\Delta t}^2\) are presented, which play a decisive role in the numerical dynamical behavior of disease-free equilibrium and endemic equilibrium. Moreover, instead of the convergence of numerical solutions, it is much more interesting that the numerical basic reproduction numbers converge to the exact ones with accuracy of order 1. Finally, numerical applications to SIS epidemic models illustrate the verification and the efficiency of our results.

MSC:

92D30 Epidemiology
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Kermack, WO; McKendrick, AG, Contributions to the mathematical theory of epidemics-I. 1927, Bull. Math. Biol., 53, 1-2, 33-55, 1991
[2] Kermack, WO; McKendrick, AG, Contributions to the mathematical theory of epidemics. II—The problem of endemicity, Bull. Math. Biol., 138, 834, 55-83, 1932 · JFM 59.1190.03
[3] Otunuga, OM, Time-dependent probability distribution for number of infection in a stochastic SIS model: case study COVID-19, Chaos Solitons Fractals, 147, 2021 · doi:10.1016/j.chaos.2021.110983
[4] Iannelli, M.; Milner, FA; Pugliese, A., Analytical and numerical results for the age-structured SIS epidemic model with mixed inter-intracohort transmission, SIAM J. Math. Anal., 23, 3, 662-688, 1992 · Zbl 0776.35032 · doi:10.1137/0523034
[5] Busenberg, SN; Iannelli, M.; Thieme, HR, Global behavior of an age-structured epidemic model, SIAM J. Math. Anal., 22, 4, 1065-1080, 1991 · Zbl 0741.92015 · doi:10.1137/0522069
[6] Busenberg, S.N., Iannelli, M., Thieme, H.R., et al.: Dynamics of an age structured epidemic model. Dyn. Syst. Nankai Ser. Pure Appl. Math. Theor. Phys. 4, 1-19 (1993) · Zbl 0943.92502
[7] Ainseba, B.; Bouguima, S.; Fekih, S., Biological consistency of an epidemic model with both vertical and horizontal transmissions, Nonlinear Anal. Real World Appl., 28, 192-207, 2016 · Zbl 1371.92115 · doi:10.1016/j.nonrwa.2015.09.010
[8] Kang, H.; Ruan, S., Mathematical analysis on an age-structured SIS epidemic model with nonlocal diffusion, J. Math. Biol., 83, 1, 5, 2021 · Zbl 1473.35599 · doi:10.1007/s00285-021-01634-x
[9] Alexanderian, A.; Gobbert, MK; Fister, KR; Gaff, H.; Lenhart, S.; Schaefer, E., An age-structured model for the spread of epidemic cholera: analysis and simulation, Nonlinear Anal. Real World Appl., 12, 6, 3483-3498, 2011 · Zbl 1231.35268 · doi:10.1016/j.nonrwa.2011.06.009
[10] McCluskey, CC, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9, 4, 819-841, 2012 · Zbl 1259.34068 · doi:10.3934/mbe.2012.9.819
[11] Akimenko, VV, Asymptotically stable states of nonlinear age-structured monocyclic population model I. Travelling wave solution, Math. Comput. Simul., 133, 2-23, 2017 · Zbl 1540.92088 · doi:10.1016/j.matcom.2015.06.004
[12] Akimenko, VV, Asymptotically stable states of non-linear age-structured monocyclic population model II. Numerical simulation, Math. Comput. Simul., 133, 24-38, 2017 · Zbl 1519.92179 · doi:10.1016/j.matcom.2015.06.003
[13] Akimenko, VV, Nonlinear age-structured models of polycyclic population dynamics with death rates as power functions with exponent \(n\), Math. Comput. Simul., 133, 175-205, 2017 · Zbl 1540.92089 · doi:10.1016/j.matcom.2016.08.004
[14] Akimenko, VV, An age-structured SIR epidemic model with fixed incubation period of infection, Comput. Math. Appl., 73, 7, 1485-1504, 2017 · Zbl 1370.92156 · doi:10.1016/j.camwa.2017.01.022
[15] Kuniya, T., Numerical approximation of the basic reproduction number for a class of age-structured epidemic models, Appl. Math. Lett., 73, 106-112, 2017 · Zbl 1377.92090 · doi:10.1016/j.aml.2017.04.031
[16] Bacaër, N., Approximation of the basic reproduction number \({R}_0\) for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69, 1067-1091, 2007 · Zbl 1298.92093 · doi:10.1007/s11538-006-9166-9
[17] Yang, HZ; Yang, ZW; Liu, SQ, Numerical threshold of linearly implicit Euler method for nonlinear infection-age SIR models, Discrete Cont. Dyn. B, 28, 1, 70-92, 2023 · Zbl 1502.65079 · doi:10.3934/dcdsb.2022067
[18] Ganegoda, N.; Götz, T.; Wijaya, KP, An age-dependent model for dengue transmission: analysis and comparison to field data, Appl. Math. Comput., 388, 2021 · Zbl 1508.92255
[19] Singh, A.; Deolia, P., COVID-19 outbreak: a predictive mathematical study incorporating shedding effect, J. Appl. Math. Comput., 69, 1, 1239-1268, 2023 · Zbl 1512.92122 · doi:10.1007/s12190-022-01792-1
[20] Reyné, B.; Richard, Q.; Selinger, C.; Sofonea, MT; Djidjou-Demasse, R.; Alizon, S., Non-markovian modelling highlights the importance of age structure on Covid-19 epidemiological dynamics, Math. Modell. Nat. Phenom., 17, 7, 2022 · Zbl 1491.92120 · doi:10.1051/mmnp/2022008
[21] Bera, S.; Khajanchi, S.; Roy, TK, Stability analysis of fuzzy HTLV-I infection model: a dynamic approach, J. Appl. Math. Comput., 69, 1, 171-199, 2023 · Zbl 1516.37138 · doi:10.1007/s12190-022-01741-y
[22] Bera, S.; Khajanchi, S.; Roy, TK, Dynamics of an HTLV-I infection model with delayed CTLs immune response, Appl. Math. Comput., 430, 2022 · Zbl 1510.92120
[23] Mondal, J., Khajanchi, I., Akhtar, M.N.: A mathematical model for COVID-19 pandemic with the impact of economic development. In: Fractal Signatures in the Dynamics of an Epidemiology, pp. 118-134. CRC Press
[24] Tiwari, PK; Rai, RK; Khajanchi, S.; Gupta, RK; Misra, AK, Dynamics of coronavirus pandemic: effects of community awareness and global information campaigns, Eur. Phys. J. Plus., 136, 10, 994, 2021 · doi:10.1140/epjp/s13360-021-01997-6
[25] Hattaf, K.; Yousfi, N., A numerical method for delayed partial differential equations describing infectious diseases, Comput. Math. Appl., 72, 11, 2741-2750, 2016 · Zbl 1368.65138 · doi:10.1016/j.camwa.2016.09.024
[26] Hattaf, K.; Lashari, AA; El Boukari, B.; Yousfi, N., Effect of discretization on dynamical behavior in an epidemiological model, Differ. Equ. Dyn. Syst., 23, 403-413, 2015 · Zbl 1328.92076 · doi:10.1007/s12591-014-0221-y
[27] Yang, ZW; Zuo, TQ; Chen, ZJ, Numerical analysis of linearly implicit Euler-Riemann method for nonlinear Gurtin-MacCamy model, Appl. Numer. Math., 163, 147-166, 2021 · Zbl 1462.65118 · doi:10.1016/j.apnum.2020.12.018
[28] Chen, ZJ; Xu, RZ; Yang, ZW, Numerical analysis of linear \(\theta \)-methods with two-layer boundary conditions for age-structured population models, Math. Comput. Simul., 182, 603-619, 2021 · Zbl 1524.65329 · doi:10.1016/j.matcom.2020.11.016
[29] Yan, DX; Fu, XL, Analysis of an age-structured HIV infection model with logistic target-cell growth and antiretroviral therapy, IMA J. Appl. Math., 83, 6, 1037-1065, 2018 · Zbl 1485.92171
[30] Rihan, F.; Arafa, A.; Rakkiyappan, R.; Rajivganthi, C.; Xu, Y., Fractional-order delay differential equations for the dynamics of hepatitis C virus infection with IFN-\( \alpha\) treatment, Alex. Eng. J., 60, 5, 4761-4774, 2021 · doi:10.1016/j.aej.2021.03.057
[31] Hattaf, K., On the stability and numerical scheme of fractional differential equations with application to biology, Computation, 10, 6, 97, 2022 · doi:10.3390/computation10060097
[32] Hattaf, K., A new class of generalized fractal and fractal-fractional derivatives with non-singular kernels, Fractal Fractional, 7, 5, 395, 2023 · doi:10.3390/fractalfract7050395
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.