×

Phase shifting control for IQ separation in qubit state tomography. (English) Zbl 1542.81477

Summary: Achieving high fidelity in the readout of superconducting qubits through homodyne detection requires a sufficient signal-to-noise ratio during detection, the data of which ideally land on a circular path in the IQ quadrature plane. Extraneous imbalances in the IQ mixer deform the path into an ellipse and decrease the detection fidelity. We present a novel approach that utilizes phase-shift control to rotate the state vectors on the IQ plane. By optimizing the phase shift, the detection data are symmetrically distributed about the elliptical minor axis where the readout signal-to-noise ratio is maximized. An 11% enhancement in the readout signal-to-noise ratio has been demonstrated through both theoretical analysis and experimental verification, resulting in improved fidelity in qubit state tomography.

MSC:

81Q93 Quantum control
81P18 Quantum state tomography, quantum state discrimination
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
Full Text: DOI

References:

[1] Harty, TP; Allcock, DTC; Ballance, CJ, High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit, Phys. Rev. Lett., 113 (2014) · doi:10.1103/PhysRevLett.113.220501
[2] Myerson, AH; Szwer, DJ; Webster, SC, High-fidelity readout of trapped-ion qubits, Phys. Rev. Lett., 100 (2008) · doi:10.1103/PhysRevLett.100.200502
[3] Scholl, P.; Shaw, A.; Tsai, RB-S, Erasure conversion in a high-fidelity Rydberg quantum simulator, Nature, 622, 273-278 (2023) · doi:10.1038/s41586-023-06516-4
[4] Evered, SJ; Bluvstein, D.; Kalinowski, M., High-fidelity parallel entangling gates on a neutral atom quantum computer, Nature, 622, 268-272 (2023) · doi:10.1038/s41586-023-06481-y
[5] Shi, X-F, Quantum logic and entanglement by neutral Rydberg atoms: methods and fidelity, Quantum Sci. Technol., 7 (2022) · doi:10.1088/2058-9565/ac18b8
[6] Arute, F.; Arya, K.; Babbush, R., Quantum supremacy using a programmable superconducting processor, Nature, 574, 505-510 (2019) · doi:10.1038/s41586-019-1666-5
[7] Monz, T.; Nigg, D.; Martinez, EA, Realization of a scalable Shor algorithm, Science, 351, 1068-1070 (2016) · Zbl 1355.81060 · doi:10.1126/science.aad9480
[8] Ladd, T.; Jelezko, F.; Laflamme, R., Quantum computers, Nature, 464, 45-53 (2010) · doi:10.1038/nature08812
[9] Deutsch, D., Quantum theory, the church-turing principle and the universal quantum computer, Proc. R. Soc. Loud. A, 400, 97-117 (1985) · Zbl 0900.81019 · doi:10.1098/rspa.1985.0070
[10] Berggren, KK, Quantum computing with superconductors, Proc. IEEE, 92, 1630-1638 (2004) · doi:10.1109/JPROC.2004.833672
[11] Clarke, J.; Wilhelm, F., Superconducting quantum bits, Nature, 453, 1031-42 (2008) · doi:10.1038/nature07128
[12] Lupaşcu, A.; Saito, S.; Picot, T., Quantum non-demolition measurement of a superconducting two-level system, Nat. Phys., 3, 119-123 (2007) · doi:10.1038/nphys509
[13] Bianchetti, R.; Filipp, S.; Baur, M., Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics, Phys. Rev. A, 80 (2009) · doi:10.1103/PhysRevA.80.043840
[14] Howington, C.; Opremcak, A.; McDermott, R., Interfacing superconducting qubits with cryogenic logic: Readout, IEEE Trans. Appl. Supercond., 29, 1-5 (2019) · doi:10.1109/TASC.2019.2908884
[15] Vijay, R., Slichter, D.H., Siddiqi, I.: Dispersive microwave readout for quantum electrical circuits. In: Paper presented in 2011 IEEE MTT-S International Microwave Symposium, pp. 1-4 (2011)
[16] Blais, A.; Huang, RS; Wallraff, A., Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation, Phys. Rev. A, 69 (2004) · doi:10.1103/PhysRevA.69.062320
[17] Vijay, R.; Slichter, DH; Siddiqi, I., Observation of quantum jumps in a superconducting artificial atom, Phys. Rev. Lett., 106 (2011) · doi:10.1103/PhysRevLett.106.110502
[18] Didier, N.; Bourassa, J.; Blais, A., Fast quantum nondemolition readout by parametric modulation of longitudinal qubit-oscillator interaction, Phys. Rev. Lett., 115 (2015) · doi:10.1103/PhysRevLett.115.203601
[19] Frey, T.; Leek, PJ; Beck, M., Dipole coupling of a double quantum dot to a microwave resonator, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.046807
[20] Petersson, KD; McFaul, LW; Schroer, MD, Circuit quantum electrodynamics with a spin qubit, Nature, 490, 380-383 (2012) · doi:10.1038/nature11559
[21] Mallet, F.; Ong, F.; Palacios-Laloy, A., Single-shot qubit readout in circuit quantum electrodynamics, Nat. Phys., 5, 791-795 (2009) · doi:10.1038/nphys1400
[22] Jeffrey, E.; Sank, D.; Mutus, J., Fast accurate state measurement with superconducting qubits, Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.190504
[23] Krantz, P.; Kjaergaard, M.; Yan, F., A quantum engineer’s guide to superconducting qubits, Appl. Phys. Rev., 6 (2019) · doi:10.1063/1.5089550
[24] D’Anjou, B.; Burkard, G., Optimal dispersive readout of a spin qubit with a microwave resonator, Phys. Rev. B, 100 (2019) · doi:10.1103/PhysRevB.100.245427
[25] Boissonneault, M.; Gambetta, JM; Blais, A., Improved superconducting qubit readout by qubit-induced nonlinearities, Phys. Rev. Lett., 105 (2010) · doi:10.1103/PhysRevLett.105.100504
[26] Vepsäläinen, A.; Danilin, S.; Paraoanu, GS, Superadiabatic population transfer in a three-level superconducting circuit, Sci. Adv., 5, eaau5999 (2019) · doi:10.1126/sciadv.aau5999
[27] Jolin, SW; Borgani, R.; Tholén, MO, Calibration of mixer amplitude and phase imbalance in superconducting circuits, Rev. Sci. Instrum., 91 (2020) · doi:10.1063/5.0025836
[28] Al Amin, A.; Jansen, SL; Takahashi, H., A hybrid IQ imbalance compensation method for optical OFDM transmission, Opt. Express, 18, 4859-4866 (2010) · doi:10.1364/OE.18.004859
[29] Ristè, D.; Fallek, S.; Donovan, B., Microwave techniques for quantum computers: state-of-the-art control systems for quantum processors, IEEE Microw. Mag., 21, 60-71 (2020) · doi:10.1109/MMM.2020.2993477
[30] Chow, J.; Gambetta, J.; Magesan, E., Implementing a strand of a scalable fault-tolerant quantum computing fabric, Nat. Commun., 5, 4015 (2014) · doi:10.1038/ncomms5015
[31] Wallraff, A.; Schuster, DI; Blais, A., Approaching unit visibility for control of a superconducting qubit with dispersive readout, Phys. Rev. Lett., 95 (2005) · doi:10.1103/PhysRevLett.95.060501
[32] Schuchert, A.; Hasholzner, R.; Antoine, P., A novel IQ imbalance compensation scheme for the reception of OFDM signals, IEEE Trans. Consum. Electron., 47, 313-318 (2001) · doi:10.1109/30.964115
[33] Jorgesen, D., Marki, C.: Balun basics primer. Marki Microwave (2014)
[34] Campbell, CF; Brown, SA, A compact 5-bit phase-shifter MMIC for Kband satellite communication systems, IEEE Trans. Microwave Theory Tech., 48, 2652-2656 (2000) · doi:10.1109/22.899026
[35] Atwater, HA, Reflection coefficient transformations for phase-shift circuits, IEEE Trans. Microwave Theory Tech., 28, 563-568 (1980) · doi:10.1109/TMTT.1980.1130119
[36] Burdin, F.; Iskandar, Z.; Podevin, F., Design of compact reflection-type phase shifters with high figure of-merit, IEEE Trans. Microwave Theory Tech., 63, 1883-1893 (2015) · doi:10.1109/TMTT.2015.2428242
[37] Koch, J.; Yu, TM; Gambetta, J., Charge-insensitive qubit design derived from the cooper pair box, Phys. Rev. A, 76 (2007) · doi:10.1103/PhysRevA.76.042319
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.