×

Design of quantum error correcting code for biased error on heavy-hexagon structure. (English) Zbl 1542.81324

Summary: Surface code is an error-correcting method that can be applied to the implementation of a usable quantum computer. At present, a promising candidate for a usable quantum computer is based on superconductor-specifically transmon. Because errors in transmon-based quantum computers appear biasedly as Z type errors, tailored surface and XZZX codes have been developed to deal with the type errors. Even though these surface codes have been suggested for lattice structures, since transmons-based quantum computers, developed by IBM, have a heavy-hexagon structure, it is natural to ask how tailored surface code and XZZX code can be implemented on the heavy-hexagon structure. In this study, we provide a method for implementing tailored surface code and XZZX code on a heavy-hexagon structure. Even when there is no bias, we obtain 0.231% as the threshold of the tailored surface code, which is much better than 0.21% and 0.209% as the thresholds of the surface code and XZZX code, respectively. Furthermore, we can see that even though a decoder, which is not the best of the syndromes, is used, the thresholds of the tailored surface code and XZZX code increase as the bias of the Z error increases. Finally, we show that in the case of infinite bias, the threshold of the surface code is 0.264%, but the thresholds of the tailored surface code and XZZX code are 0.296% and 0.328% respectively.

MSC:

81P73 Computational stability and error-correcting codes for quantum computation and communication processing
11Y05 Factorization

Software:

PyMatching; XZZX

References:

[1] Shor, PW, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev., 41, 303-332 (1999) · Zbl 1005.11507 · doi:10.1137/S0036144598347011
[2] Grover, LK, Quantum mechanics helps in searching for a needle in a Haystack, Phys. Rev. Lett., 79, 2, 325-328 (1997) · doi:10.1103/PhysRevLett.79.325
[3] Bae, J.; Kwon, Y., Generalized quantum search Hamiltonian, Phys. Rev. A, 66 (2002) · doi:10.1103/PhysRevA.66.012314
[4] Preskill, J., Quantum computing in the NISQ era and beyond, Quantum, 2, 79 (2018) · doi:10.22331/q-2018-08-06-79
[5] Roffe, J., Quantum error correction: an introductory guide, Contemp. Phys., 60, 3, 226 (2019) · doi:10.1080/00107514.2019.1667078
[6] Bravyi, S., Correcting coherent errors with surface codes, NPJ Quantum Inf., 4, 1, 1-6 (2018) · doi:10.1038/s41534-018-0106-y
[7] Fowler, AG; Mariantoni, M.; Martinis, JM; Cleland, AN, Surface codes: towards practical large-scale quantum computation, Phys. Rev. A, 86 (2012) · doi:10.1103/PhysRevA.86.032324
[8] Kitaev, AY, Fault-tolerant quantum computation by Anyons, Ann. Phys., 303, 2-30 (2003) · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[9] Gottesman, DE; Preskill, JP, Stabilizer Codes and Quantum Error Correction (1997), Pasadena, CA: California Institute of Technology, Pasadena, CA
[10] Acharya, R. et al.: Suppressing quantum errors by scaling a surface code logical qubit. arXiv preprint arXiv:2207.06431 (2022)
[11] Sheldon, S.; Magesan, E.; Chow, JM; Gambetta, JM, Procedure for systematically tuning up cross-talk in the cross-resonance gate, Phys. Rev. A., 93 (2016) · doi:10.1103/PhysRevA.93.060302
[12] Chow, JM; Gambetta, JM; Magesan, E.; Abraham, DW; Cross, AW; Johnson, BR; Masluk, NA; Ryan, CA; Smolin, JA; Srinivasan, SJ; Steffen, M., Implementing a strand of a scalable fault-tolerant quantum computing fabric, Nat. Commun., 5, 4015 (2014) · doi:10.1038/ncomms5015
[13] Takita, M.; Cross, AW; Córcoles, AD; Chow, JM; Gambetta, JM, Experimental demonstration of fault-tolerant state preparation with superconducting qubits, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.180501
[14] Córcoles, AD; Magesan, E.; Srinivasan, SJ; Cross, AW; Steffen, M.; Gambetta, JM; Chow, JM, Demonstration of a quantum error detection code using a square lattice of four superconducting qubits, Nat. Commun., 6, 6979 (2015) · doi:10.1038/ncomms7979
[15] Krinner, S.; Lacroix, N.; Remm, A.; Di Paolo, A.; Genois, E.; Leroux, C.; Hellings, C.; Lazar, S.; Swiadek, F.; Herrmann, J.; Norris, GJ; Andersen, CK; Müller, M.; Blais, A.; Eichler, C.; Wallraff, A., Realizing repeated quantum error correction in a distance-three surface code, Nature, 605, 669-674 (2022) · doi:10.1038/s41586-022-04566-8
[16] Ioffe, L.; Mézard, M., Asymmetric quantum error-correcting codes, Phys. Rev. A, 75 (2007) · doi:10.1103/PhysRevA.75.032345
[17] Aliferis, P.; Preskill, J., Fault-tolerant quantum computation against biased noise, Phys. Rev. A, 78 (2008) · doi:10.1103/PhysRevA.78.052331
[18] Azad, U.; Lipińska, A.; Mahato, S.; Sachdeva, R.; Bhoumik, D.; Majumdar, R., Surface code design for asymmetric error channels, IET Quantum Commun., 3, 174 (2022) · doi:10.1049/qtc2.12042
[19] Tuckett, DK; Bartlett, SD; Flammia, ST, Ultrahigh error threshold for surface codes with biased noise, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.050505
[20] Tuckett, DK; Bartlett, SD; Flammia, ST; Brown, BJ, Fault-tolerant thresholds for the surface code in excess of \(5 \%\) under biased noise, Phys. Rev. Lett., 124, 13 (2020) · doi:10.1103/PhysRevLett.124.130501
[21] Higgott, O. et al.: Fragile boundaries of tailored surface codes. arXiv preprint arXiv:2203.04948, (2022)
[22] Bonilla Ataides, JP; Tuckett, DK; Bartlett, SD; Flammia, ST; Brown, BJ, The XZZX surface code, Nat. Commun., 12, 2172 (2021) · doi:10.1038/s41467-021-22274-1
[23] Darmawan, AS; Brown, BJ; Grimsmo, AL; Tuckett, DK; Puri, S., Practical quantum error correction with the XZZX code and Kerr-cat qubits, PRX Quantum, 2 (2021) · doi:10.1103/PRXQuantum.2.030345
[24] Zhang, EJ; Srinivasan, S.; Sundaresan, N.; Bogorin, DF; Martin, Y.; Hertzberg, JB; Timmerwilke, J.; Pritchett, EJ; Yau, J-B; Wang, C.; Landers, W.; Lewandowski, EP; Narasgond, A.; Rosenblatt, S.; Keefe, GA; Lauer, I.; Rothwell, MB; McClure, DT; Dial, OE; Orcutt, JS; Brink, M.; Chow, JM, High-performance superconducting quantum processors via laser annealing of transmon qubits, Sci. Adv., 8, eabi6690 (2022) · doi:10.1126/sciadv.abi6690
[25] Chao, R.; Reichardt, BW, Fault-tolerant quantum computation with few qubits, NPJ Quantum Inf., 4, 42 (2018) · doi:10.1038/s41534-018-0085-z
[26] Lao, L.; Almudever, CG, Fault-tolerant quantum error correction on near-term quantum processors using flag and bridge qubits, Phys. Rev. A, 101 (2020) · doi:10.1103/PhysRevA.101.032333
[27] Chao, R.; Reichardt, BW, Flag fault-tolerant error correction for any stabilizer code, PRX Quantum, 1 (2020) · doi:10.1103/PRXQuantum.1.010302
[28] Chamberland, C.; Zhu, G.; Yoder, TJ; Hertzberg, JB; Cross, AW, Topological and subsystem codes on low-degree graphs with flag qubits, Phys. Rev. X, 10 (2020)
[29] Wu, A., Li, G., Zhang, H., Guerreschi, GG., Ding, Y., Xie, Y.: Mapping surface code to superconducting quantum processors. arXiv preprint arXiv:2111.13729 (2021)
[30] Gidney, C., Stim: a fast stabilizer circuit simulator, Quantum, 5, 497 (2021) · doi:10.22331/q-2021-07-06-497
[31] Higgott, O., Pymatching: A python package for decoding quantum codes with minimum-weight perfect matching, ACM Trans Quantum Comput., 3, 1-16 (2022) · doi:10.1145/3505637
[32] Gidney, C., Newman, M.: Benchmarking the planar honeycomb code. arXiv preprint arXiv:2202.11845, (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.