×

Logical qubit behavior model and fast simulation for surface code. (English) Zbl 1542.81254

Summary: This study proposes a logical qubit behavior model (LQBM) that calculates the state of the logical qubit based on a surface code after a logical qubit operation. LQBM can simulate the surface code whose distance exceeds 5, which is impossible with conventional quantum simulators. A complex error syndrome measurement must not be executed in this model. LQBM works at the mixed level of a logical and physical qubit. Probability amplitudes and the number of state vectors are designed at the physical qubit level. The state vectors of physical qubits constituting a logical qubit are abstracted to the value of the logical qubit level. LQBM converts all logical qubit operations, which include an initialization, a state injection, universal gates, and lattice surgery operations (e.g., a merge and a split) to simple calculations. LQBM provides a better computational complexity of \(\mathrm{O}(log(distance))\) than \(O(\mathrm{distance}^2)\). Through simulation experiments, it was found that LQBM performs logical qubit operations up to 24 million times faster than existing quantum simulators in the case of \(\mathrm{distance} = 5\).

MSC:

81P68 Quantum computation

Software:

QuEST

References:

[1] Preskill, J., Quantum computing in the NISQ era and beyond, Quantum, 2, 79 (2018) · doi:10.22331/q-2018-08-06-79
[2] Kang, I.; Choung, JY; Kang, DI; Park, I., Divergence of knowledge production strategies for emerging technologies between late industrialized countries: Focusing on quantum technology, ETRI J., 43, 2, 246-259 (2021) · doi:10.4218/etrij.2019-0501
[3] Devoret, HM; Martinis, JM, Implementing qubits with superconducting integrated circuits, Quantum Inf. Process., 3, 163-203 (2004) · Zbl 1075.68599 · doi:10.1007/11128-004-3101-5
[4] Kjaergaard, M.; Schwartz, ME; Braumüller, J.; Krantz, P.; Wang, JIJ; Gustavsson, S.; Oliver, WD, Superconducting qubits: current state of play, Annu. Rev. Condens. Matter Phys., 11, 369-395 (2020) · doi:10.48550/arXiv.1905.13641
[5] Bruzewicz, CD; Chiaverini, J.; McConnell, R.; Sage, JM, Trapped-ion quantum computing: progress and challenges, Appl. Phys. Rev., 6, 021314 (2019) · doi:10.1063/1.5088164
[6] Kagalwala, KH; Di Giuseppe, GD; Abouraddy, AF; Saleh, BEA, Single-photon three-qubit quantum logic using spatial light modulators, Nat. Commun. (2017) · doi:10.1038/s41467-017-00580-x
[7] Preskill, J., Reliable quantum computers, Proc. R. Soc. A., 454, 385-410 (1998) · Zbl 0915.68051 · doi:10.1098/rspa.1998.0167
[8] Boixo, S.; Isakov, SV; Smelyanskiy, VN; Babbush, R.; Ding, N.; Jiang, Z.; Bremner, MJ; Martinis, JM; Neven, H., Characterizing quantum supremacy in near-term devices, Nat. Phys., 14, 6, 595-600 (2018) · doi:10.1038/s41567-018-0124-x
[9] Terhal, BM, Quantum error correction for quantum memories, Rev. Mod. Phys., 87, 2, 307-346 (2015) · doi:10.1103/RevModPhys.87.307
[10] Wootton, JR; Loss, D., A repetition code of 15 qubits, Phys. Rev. A, 97, 052313 (2018) · doi:10.1103/PhysRevA.97.052313
[11] Kitaev, AY, Quantum computing algorithms and error correction, Russ. Math. Surv., 52, 6, 1191-1249 (1997) · Zbl 0917.68063 · doi:10.1070/RM1997v052n06ABEH002155
[12] Kitaev, AY; Hirota, O.; Holevo, AS; Caves, CM, Quantum error correction with imperfect gates, Quantum Communication, Computing, and Measurement, 181-188 (1997), Boston: Springer, Boston · doi:10.1007/978-1-4615-5923-8_19
[13] Kitaev, AY, Fault-tolerant quantum computation by anyons, Ann. Phys., 303, 1, 2-30 (2003) · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[14] Fowler, AG; Mariantoni, M.; Martinis, JM; Cleland, AN, Surface codes: towards practical large-scale quantum computation, Phys. Rev. A, 86, 3, 032324 (2012) · doi:10.1103/PhysRevA.86.032324
[15] Bombín, H., Topological order with a twist: Ising anyons from an abelian model, Phys. Rev. Lett., 105, 3, 030403 (2010) · doi:10.1103/PhysRevLett.105.030403
[16] Horsman, C.; Fowler, AG; Devitt, S.; Meter, RV, Surface code quantum computing by lattice surgery, New J. Phys., 14, 123011 (2012) · Zbl 1448.81240 · doi:10.1088/1367-2630/14/12/123011
[17] Andersen, CK; Remm, A.; Lazar, S.; Krinner, S.; Lacroix, N.; Norris, GJ; Gabureac, M.; Eichler, C.; Wallraff, A., Repeated quantum error detection in a surface code, Nat. Phys., 16, 875-880 (2020) · doi:10.1038/s41567-020-0920-y
[18] Fowler, A.G., Gidney, C.: Low overhead quantum computation using lattice surgery. arXiv:1808.06709 (2018). doi:10.48550/arXiv.1808.06709
[19] Litinski, D.; von Oppen, F., Lattice surgery with a twist: simplifying Clifford gates of surface codes, Quantum, 2, 62 (2018) · doi:10.22331/q-2018-05-04-62
[20] Lao, L.; Wee, B.; Ashraf, I.; Someren, J.; Khammassi, N.; Bertels, K.; Almudever, CG, Mapping of lattice surgery-based quantum circuits on surface code architectures, Quantum Sci. Technol., 4, 015005 (2019) · doi:10.1088/2058-9565/aadd1a
[21] Li, R.; Wu, B.; Ying, M.; Sun, X.; Yang, G., Quantum supremacy circuit simulation on Sunway Taihulight, IEEE Trans. Parallel Distrib. Syst., 31, 805-816 (2019) · doi:10.1109/TPDS.2019.2947511
[22] Jin, K.S., Cha, G.I.: Qplayer lightweight, scalable, and fast quantum simulator. ETRI J. (2022). doi:10.4218/etrij.2021-0442
[23] Bombín, H.; Martin-Delgado, MA, Optimal resources for topological two-dimensional stabilizer codes: comparative study, Phys. Rev. A, 76, 1, 012305 (2007) · doi:10.1103/PhysRevA.76.012305
[24] Wang, DS; Fowler, AG; Stephens, AM; Hollenberg, LCL, Threshold error rates for the toric and surface codes, Quant. Inf. Comput., 10, 5, 456-469 (2010) · Zbl 1237.81057 · doi:10.26421/qic10.5-6-6
[25] Stephens, AM, Fault-tolerant thresholds for quantum error correction with the sur-face code, Phys. Rev. A, 89, 2, 022321 (2014) · doi:10.1103/PhysRevA.89.022321
[26] Fujii, K.; Fujii, K., Topological quantum computation with surface codes, Quantum Computation with Topological Codes: From Qubit to Topological Fault-tolerance, 86-106 (2015), Singapore: Springer, Singapore · Zbl 1339.81005 · doi:10.1007/978-981-287-996-7
[27] On, JH; Kim, CY; Oh, SC; Lee, SM; Cha, GI, A multilayered Pauli tracking architecture for lattice surgery-based logical qubits, ETRI J. (2022) · doi:10.4218/etrij.2022-0037
[28] You, H.; Geller, MR; Stancil, PC, Simulating the transverse Ising model on a quantum computer: error correction with the surface code, Phys. Rev. A, 87, 032341 (2013) · doi:10.1103/PhysRevA.87.032341
[29] Bravyi, S.; Gosset, D., Improved classical simulation of quantum circuits dominated by Clifford gates, Phys. Rev. Lett., 116, 250501 (2016) · doi:10.1103/PhysRevLett.116.250501
[30] Litinski, D., A game of surface codes: Large-scale quantum computing with lattice surgery, Quantum, 3, 128 (2019) · doi:10.22331/q-2019-03-05-128
[31] Herr, D.; Nori, F.; Devitt, SJ, Lattice surgery translation for quantum computation, New J. Phys. (2017) · Zbl 1512.81027 · doi:10.1088/1367-2630/aa5709
[32] Chen, J., Zhang, F., Huang, C.: Classical simulation of intermediate-size quantum circuits. arXiv:1805.01450 (2018). doi:10.48550/arXiv.1805.01450
[33] De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, T.; Watanabe, H.; Ito, N., Massively parallel quantum computer simulator, Comput. Phys. Commun., 176, 121-136 (2007) · Zbl 1196.81094 · doi:10.1016/j.cpc.2006.08.007
[34] Häner, T., Steiger, D.S.: 0.5 petabyte simulation of a 45-qubit quantum circuit. In: International Conference for the High Performance Computing, Networking, Storage and Analysis, pp. 1-10 (2017). doi:10.1145/3126908.3126947
[35] Jones, T.; Brown, A.; Bush, I.; Benjamin, SC, Quest and high performance simulation of quantum computers, Sci. Rep., 9, 10736 (2019) · doi:10.1038/s41598-019-47174-9
[36] Li, J.; Wang, X., Practical guides on programming with big number library in scientific researches, Int. J. Eng. Sci., 6, 6-11 (2017) · doi:10.9790/1813-0602010611
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.