×

Is it possible to recover Heisenberg limit by collecting information from memory environment. (English) Zbl 1542.81024

Summary: In quantum metrology, by using entangled probes, Heisenberg limit (HL), which surpasses the standard quantum limit (SQL) with uncorrelated probes, can be attained in the absence of noise. However, the entangled states are fragile in the environment. Even small amount of noise greatly reduces the precision limit. Recent results show that the magnitude of the reduced precision limit is determined by the direction of Hamiltonian which depends on the parameter to be estimated in comparison with the direction of noise. Especially, in parallel case, the precision limit becomes SQL-like. Here, we demonstrate that just in parallel case, the parameter to be estimated has clearly imprints on the “small” changed environment after proper measurements. Though the precision limit of the measures on the probe system itself becomes SQL-like, one kept the results of former measurements can collect the information of the parameter by choosing detector with proper initial state and proper interaction Hamiltonian and measuring the detector after the detector-environment evolution. The precision limit becomes HL-like after proper detector-environment evolution time.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
Full Text: DOI

References:

[1] Helstrom, CW, Quantum Detection and Estimation Theory (1976), New York: Academic Press, New York · Zbl 1332.81011
[2] Holevo, AS, Probabilistic and Statistical Aspects of Quantum Theory (1982), Amsterdam: North-Holland, Amsterdam · Zbl 0497.46053
[3] Braunstein, SL; Caves, CM, Statistical distance and the geometry of quantum states, Phys. Rev. Lett., 72, 3439 (1994) · Zbl 0973.81509 · doi:10.1103/PhysRevLett.72.3439
[4] Huelga, SF; Macchiavello, C.; Pellizzari, T.; Ekert, AK; Plenio, MB; Cirac, JI, Phys. Rev. Lett., 79, 3865 (1997) · doi:10.1103/PhysRevLett.79.3865
[5] Monras, A.; Paris, MGA, Optimal quantum estimation of loss in bosonic channels, Phys. Rev. Lett., 98, 160401 (2007) · doi:10.1103/PhysRevLett.98.160401
[6] Demkowicz-Dobrzański, R.; Kołodyński, J.; Guta, M., The elusive Heisenberg limit in quantum enhanced metrology, Nat. Commun., 3, 1063 (2012) · doi:10.1038/ncomms2067
[7] Demkowicz-Dobrzański, R.; Dorner, U.; Smith, BJ; Lundeen, JS; Wasilewski, W.; Banaszek, K.; Walmsley, IA, Quantum phase estimation with lossy interferometers, Phys. Rev. A, 80, 013825 (2009) · doi:10.1103/PhysRevA.80.013825
[8] Dorner, U.; Demkowicz-Dobrzański, R.; Smith, BJ; Lundeen, JS; Wasilewski, W.; Banaszek, K.; Walmsley, IA, Optimal quantum phase estimation, Phys. Rev. Lett., 102, 040403 (2009) · doi:10.1103/PhysRevLett.102.040403
[9] Watanabe, Y.; Sagawa, T.; Ueda, M., Optimal measurement on noisy quantum systems, Phys. Rev. Lett., 104, 020401 (2010) · doi:10.1103/PhysRevLett.104.020401
[10] Kacprowicz, M.; Demkowicz-Dobrzański, R.; Wasilewski, W.; Banaszek, K.; Walmsley, IA, Experimental quantum-enhanced estimation of a lossy phase shift, Nat. Photonics, 4, 357 (2010) · doi:10.1038/nphoton.2010.39
[11] Genoni, MGA; Olivares, S.; Paris, MG, Optical phase estimation in the presence of phase diffusion, Phys. Rev. Lett., 106, 153603 (2011) · doi:10.1103/PhysRevLett.106.153603
[12] Chin, AW; Huelga, SF; Plenio, MB, Quantum metrology in non-Markovian environments, Phys. Rev. Lett., 109, 233601 (2012) · doi:10.1103/PhysRevLett.109.233601
[13] Escher, BM; de MatosFilho, RL; Davidovich, L., General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology, Nat. Phys., 7, 406 (2011) · doi:10.1038/nphys1958
[14] Ma, J.; Huang, Y.; Wang, X.; Sun, C., Quantum Fisher information of the Greenberger-Horne-Zeilinger state in decoherence channels, Phys. Rev. A, 84, 022302 (2011) · doi:10.1103/PhysRevA.84.022302
[15] Zhong, W.; Sun, Z.; Ma, J.; Wang, X.; Nori, F., Fisher information under decoherence in Bloch representation, Phys. Rev. A, 87, 022337 (2013) · doi:10.1103/PhysRevA.87.022337
[16] Chaves, R.; Brask, JB; Markiewicz, M.; Kołodyński, J.; Acín, A., Noisy metrology beyond the standard quantum limit, Phys. Rev. Lett., 111, 120401 (2013) · doi:10.1103/PhysRevLett.111.120401
[17] Zurek, WH, Quantum Darwinism, Nat. Phys., 5, 181 (2009) · doi:10.1038/nphys1202
[18] Zwolak, M.; Quan, HT; Zurek, WH, Quantum Darwinism in a hazy environment, Phys. Rev. Lett., 103, 110402 (2009) · doi:10.1103/PhysRevLett.103.110402
[19] Blume-Kohout, R.; Zurek, WH, Quantum Darwinism in quantum Brownian motion: the vacuum as a witness, Phys. Rev. Lett., 101, 240405 (2008) · doi:10.1103/PhysRevLett.101.240405
[20] Blume-Kohout, R.; Zurek, WH, Quantum Darwinism: entanglement, branches, and the emergent classicality of redundantly stored quantum information, Phys. Rev. A, 73, 062310 (2006) · doi:10.1103/PhysRevA.73.062310
[21] Blume-Kohout, R.; Zurek, WH, A simple example of quantum Darwinism: redundant information storage in many-spin environments, Found. Phys., 35, 1857 (2005) · Zbl 1102.81301 · doi:10.1007/s10701-005-7352-5
[22] Ollivier, H.; Poulin, D.; Zurek, WH, Environment as a witness: selective proliferation of information and emergence of objectivity in a quantum universe, Phys. Rev. A, 72, 042113 (2005) · doi:10.1103/PhysRevA.72.042113
[23] Ollivier, Harold; Poulin, David; Zurek, Wojciech H., Objective properties from subjective quantum states: environment as a witness, Phys. Rev. Lett., 93, 220401 (2004) · doi:10.1103/PhysRevLett.93.220401
[24] Brandão, FGSL; Piani, M.; Horodecki, P., Generic emergence of classical features in quantum Darwinism, Nat. Commun., 6, 7908 (2015) · doi:10.1038/ncomms8908
[25] Breuer, H.; Petruccione, F., The Theory of Open Quantum Systems (2002), Oxford: Oxford University Press, Oxford · Zbl 1053.81001
[26] Pollock, FA; Rodríguez-Rosario, C.; Frauenheim, T.; Paternostro, M.; Modi, K., Operational Markov condition for quantum processes, Phys. Rev. Lett., 120, 040405 (2018) · doi:10.1103/PhysRevLett.120.040405
[27] Pollock, FA; Rodríguez-Rosario, C.; Frauenheim, T.; Paternostro, M.; Modi, K., Non-Markovian quantum processes: complete framework and efficient characterization, Phys. Rev. A, 97, 012127 (2018) · doi:10.1103/PhysRevA.97.012127
[28] Budini, AA, Quantum non-Markovian processes break conditional past-future independence, Phys. Rev. Lett., 121, 240401 (2018) · doi:10.1103/PhysRevLett.121.240401
[29] Budini, AA, Conditional past-future correlation induced by non-Markovian dephasing reservoirs, Phys. Rev. A, 99, 052125 (2019) · doi:10.1103/PhysRevA.99.052125
[30] Jin, Y., Quantifying environmental memory degree from the aspect of environmental sensitivity, Quantum Inf. Process., 20, 77 (2021) · Zbl 1509.81164 · doi:10.1007/s11128-021-03020-4
[31] Jin, Y., Definition of conditional Fisher information-estimating hidden parameter of probe state through environmental memory, Eur. Phys. J. Plus, 136, 729 (2021) · doi:10.1140/epjp/s13360-021-01728-x
[32] Zurek, WH, Environment-induced superselection rules, Phys. Rev. D, 26, 1862 (1982) · doi:10.1103/PhysRevD.26.1862
[33] Zurek, WH, Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys., 75, 715 (2003) · Zbl 1205.81031 · doi:10.1103/RevModPhys.75.715
[34] Cucchietti, FM; Paz, JP; Zurek, WH, Decoherence from spin environments, Phys. Rev. A, 72, 052113 (2005) · doi:10.1103/PhysRevA.72.052113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.