×

Shape gradient methods for shape optimization of an unsteady multiscale fluid-structure interaction model. (English) Zbl 1542.65121

Summary: We consider numerical shape optimization of a fluid-structure interaction model. The constrained system involves multiscale coupling of a two-dimensional unsteady Navier-Stokes equation and a one-dimensional ordinary differential equation for fluid flows and structure, respectively. We derive shape gradients for both objective functionals of least-squares type and energy dissipation. The state and adjoint state equations are numerically solved on the time-dependent domains using the Arbitrary-Lagrangian-Eulerian method. Numerical results are presented to illustrate effectiveness of algorithms.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65K10 Numerical optimization and variational techniques
49M41 PDE constrained optimization (numerical aspects)
49Q10 Optimization of shapes other than minimal surfaces
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q35 PDEs in connection with fluid mechanics

Software:

FreeFem++
Full Text: DOI

References:

[1] Brügger, R.; Harbrecht, H.; Tausch, J., On the numerical solution of a time-dependent shape optimization problem for the heat equation, SIAM J. Control Optim., 59, 931-953, 2021 · Zbl 1461.49051 · doi:10.1137/19M1268628
[2] Correa, R.; Seeger, A., Directional derivative of a min-max function, Nonlinear Anal., 9, 13-22, 1985 · Zbl 0556.49007 · doi:10.1016/0362-546X(85)90049-5
[3] Delfour, MC; Zolesio, JP, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2011, Philadelphia: SIAM, Philadelphia · Zbl 1251.49001 · doi:10.1137/1.9780898719826
[4] Haslinger, J.; Mäkinen, R., Introduction to Shape Optimization: Theory, Approximation, and Computation, 2003, Philadelphia: SIAM, Philadelphia · Zbl 1020.74001 · doi:10.1137/1.9780898718690
[5] Dziri, R.; Zolesio, JP, Drag reduction for non-cylindrical Navier-Stokes flows, Optim. Methods. Softw., 26, 575-600, 2011 · Zbl 1230.49034 · doi:10.1080/10556788.2010.516434
[6] Feppon, F.: Shape and topology optimization of multiphysics systems, PhD thesis, Universite Paris Saclay, Paris (2019)
[7] Feppon, F.; Allaire, G.; Dapogny, C.; Jolivet, P., Topology optimization of thermal fluid-structure systems using body-fitted meshes and parallel computing, J. Comput. Phys., 417, 2020 · Zbl 1437.74021 · doi:10.1016/j.jcp.2020.109574
[8] Forti, D.; Dede, L., Semi-implicit BDF time discretization of the Navier-Stokes equations with VMS and LES modeling in a high performance computing framework, Comput. Fluids, 117, 168-182, 2015 · Zbl 1390.76149 · doi:10.1016/j.compfluid.2015.05.011
[9] Girault, V.; Raviart, PA, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, 1986, Berlin: Springer-Verlag, Berlin · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[10] Haslinger, J.; Makinen, RAE, Introduction to Shape Optimization, 2003, Philadelphia: SIAM, Philadelphia · Zbl 1020.74001 · doi:10.1137/1.9780898718690
[11] Iglesias, JA; Sturm, K.; Wechsung, F., Two-dimensional shape optimization with nearly conformal transformations, SIAM J. Sci. Comput., 40, 3807-3830, 2018 · Zbl 1403.49043 · doi:10.1137/17M1152711
[12] Haubner, J.; Ulbrich, M.; Ulbrich, S., Analysis of shape optimization problems for unsteady fluid-structure interaction, Inverse Probl., 36, 2020 · Zbl 1440.49044 · doi:10.1088/1361-6420/ab5a11
[13] Heners, JP; Radtke, L.; Hinze, M.; Düster, A., Adjoint shape optimization for fluid-structure interaction of ducted flows, Comput. Mech., 61, 259-276, 2018 · Zbl 1461.76152 · doi:10.1007/s00466-017-1465-5
[14] Hecht, F., New developments in freefem++, J. Numer. Math., 20, 251-265, 2012 · Zbl 1266.68090 · doi:10.1515/jnum-2012-0013
[15] Katamine, E.; Kawai, R.; Takahashi, M., Shape optimization for stiffness maximization of geometrically nonlinear structure by considering fluid-structure-interaction, Mech. Eng. Lett., 7, 1-8, 2021 · doi:10.1299/mel.21-00048
[16] Lasiecka, I.; Szulc, K.; Zochowski, A., Reducing drag of the obstacle in the channel by boundary control: theory and numerics, IFAC-PapersOnline, 52, 2, 168-173, 2019 · doi:10.1016/j.ifacol.2019.08.030
[17] Lasiecka, I.; Szulc, K.; Zochowski, A., Boundary control of small solutions to fluid-structure interactions arsing in coupling of elasticity with Navier-Stokes equation under mixed boundary conditions, Nonlinear Anal. Real World Appl., 44, 54-85, 2018 · Zbl 1406.35229 · doi:10.1016/j.nonrwa.2018.04.004
[18] Laurain, A.; Walker, SW, Optimal control of volume-preserving mean curvature flow, J. Comput. Phys., 438, 2021 · Zbl 07505967 · doi:10.1016/j.jcp.2021.110373
[19] Leugering, G.; Novotny, AA; Menzala, GP; Sokołłowski, J., On shape optimization for an evolution coupled system, Appl. Math. Optim., 64, 441-466, 2011 · Zbl 1242.49089 · doi:10.1007/s00245-011-9148-7
[20] Li, J.; Zhu, S., Shape optimization of Navier-Stokes flows by a two-grid method, Comput. Methods Appl. Mech. Eng., 400, 2022 · Zbl 1507.49038 · doi:10.1016/j.cma.2022.115531
[21] Li, J.; Zhu, S.; Shen, X., On mixed finite element approximations of shape gradients in shape optimization with the Navier-Stokes equation, Numer. Methods Partial Differ. Equ., 39, 1604-1634, 2023 · Zbl 1537.65169 · doi:10.1002/num.22947
[22] Li, J.; Zhu, S., Shape optimization of the Stokes eigenvalue problem, SIAM J. Sci. Comput., 45, A798-A828, 2023 · Zbl 1512.65254 · doi:10.1137/21M1451543
[23] Mohammadi, B.; Pironneau, O., Applied Shape Optimization for Fluids, 2010, Oxford: Oxford University Press, Oxford
[24] Moubachir, M.; Zolesio, JP, Moving Shape Analysis and Control Applications to Fluid Structure Interactions. Pure and Application in Mathematics, 2006, Boca Raton, FL: Chapman and Hall/CRC, Boca Raton, FL · Zbl 1117.49003
[25] Plotnikov, P.; Sokołłiowski, J., Compressible Navier-Stokes Equations Theory and Shape Optimization, 2012, Basel: Birkähser/Springer, Basel · Zbl 1260.35002 · doi:10.1007/978-3-0348-0367-0
[26] Raja, D., Moubachir, M., Zolesio, J. P.: Navier-Stokes dynamical shape control: from state derivative to min-max principle. INRIA., N 4610 1-57 (2002)
[27] Scheid, JF; Sokolowski, J., Shape optimization for a fluid elasticity system, Pure. Appl. Funct. Anal., 3, 1, 193-217, 2018 · Zbl 1474.35540
[28] Sigmund, O., Design of multiphysics actuators using topology optimization—part II: two-material structures, Comput. Methods Appl. Mech. Eng., 190, 6605-6627, 2001 · Zbl 1116.74407 · doi:10.1016/S0045-7825(01)00252-3
[29] Sokolowski, J.; Zolesio, JP, Introduction to Shape Optimization: Shape Sensitivity Analysis, 1992, Heidelberg: Springer, Heidelberg · Zbl 0761.73003 · doi:10.1007/978-3-642-58106-9
[30] Yan, W.; Li, Y.; Hou, J., Shape optimization for an obstacle located in incompressible Boussinesq flow, Comput. Fluids, 240, 2022 · Zbl 1521.76126 · doi:10.1016/j.compfluid.2022.105431
[31] Yagi, H.; Kawahara, M., Optimal shape determination of a body located in incompressible viscous fluid flow, Comput. Methods Appl. Mech. Eng., 196, 5084-5091, 2007 · Zbl 1173.76317 · doi:10.1016/j.cma.2007.07.008
[32] Zhu, S.; Gao, Z., Convergence analysis of mixed finite element approximations to shape gradients in the Stokes equation, Comput. Methods Appl. Mech. Eng., 343, 127-150, 2019 · Zbl 1440.76093 · doi:10.1016/j.cma.2018.08.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.