×

Monte Carlo convergence rates for \(k\)th moments in Banach spaces. (English) Zbl 1542.65007

Summary: We formulate standard and multilevel Monte Carlo methods for the \(k\)th moment \(\mathbb{M}_\varepsilon^k [\xi]\) of a Banach space valued random variable \(\xi : \Omega \to E\), interpreted as an element of the \(k\)-fold injective tensor product space \(\otimes_\varepsilon^k E\). For the standard Monte Carlo estimator of \(\mathbb{M}_\varepsilon^k [\xi]\), we prove the \(k\)-independent convergence rate \(1 - \frac{ 1}{ p}\) in the \(L_q(\Omega; \otimes_\varepsilon^k E)\)-norm, provided that (i) \(\xi \in L_{kq}(\Omega; E)\) and (ii) \(q \in [p, \infty)\), where \(p \in [1,2]\) is the Rademacher type of \(E\). By using the fact that Rademacher averages are dominated by Gaussian sums combined with a version of Slepian’s inequality for Gaussian processes due to Fernique, we moreover derive corresponding results for multilevel Monte Carlo methods, including a rigorous error estimate in the \(L_q(\Omega; \otimes_\varepsilon^k E)\)-norm and the optimization of the computational cost for a given accuracy. Whenever the type of the Banach space \(E\) is \(p = 2\), our findings coincide with known results for Hilbert space valued random variables.
We illustrate the abstract results by three model problems: second-order elliptic PDEs with random forcing or random coefficient, and stochastic evolution equations. In these cases, the solution processes naturally take values in non-Hilbertian Banach spaces. Further applications, where physical modeling constraints impose a setting in Banach spaces of type \(p < 2\), are indicated.

MSC:

65C05 Monte Carlo methods
46B28 Spaces of operators; tensor products; approximation properties

References:

[1] Babuška, I.; Rheinboldt, W. C., A posteriori error analysis of finite element solutions for one-dimensional problems. SIAM J. Numer. Anal., 565-589 (1981) · Zbl 0487.65060
[2] Barth, A.; Lang, A.; Schwab, Ch., Multilevel Monte Carlo method for parabolic stochastic partial differential equations. BIT, 3-27 (2013) · Zbl 1272.65009
[3] Barth, A.; Schwab, Ch.; Zollinger, N., Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math., 123-161 (2011) · Zbl 1230.65006
[4] Becker, S.; Gess, B.; Jentzen, A.; Kloeden, P. E., Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen-Cahn equations. Stoch. Partial Differ. Equ. Anal. Comput., 211-268 (2023) · Zbl 1517.60081
[5] Bierig, C.; Chernov, A., Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems. Numer. Math., 579-613 (2015) · Zbl 1432.65006
[6] Bierig, C.; Chernov, A., Estimation of arbitrary order central statistical moments by the multilevel Monte Carlo method. Stoch. Partial Differ. Equ. Anal. Comput., 3-40 (2016) · Zbl 1375.65011
[7] Bogachev, V. I., Gaussian Measures. Mathematical Surveys and Monographs (1998), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0913.60035
[8] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics (2008), Springer: Springer New York · Zbl 1135.65042
[9] Charrier, J., Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal., 216-246 (2012) · Zbl 1241.65011
[10] Charrier, J.; Scheichl, R.; Teckentrup, A. L., Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal., 322-352 (2013) · Zbl 1273.65008
[11] Chernov, A.; Schwab, Ch., First order \(k\)-th moment finite element analysis of nonlinear operator equations with stochastic data. Math. Comput., 1859-1888 (2013) · Zbl 1281.65008
[12] Cliffe, K. A.; Giles, M. B.; Scheichl, R.; Teckentrup, A. L., Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci., 3-15 (2011) · Zbl 1241.65012
[13] Collier, N.; Haji-Ali, A.-L.; Nobile, F.; von Schwerin, E.; Tempone, R., A continuation multilevel Monte Carlo algorithm. BIT, 399-432 (2015) · Zbl 1317.65030
[14] Cox, S.; Hutzenthaler, M.; Jentzen, A.; van Neerven, J.; Welti, T., Convergence in Hölder norms with applications to Monte Carlo methods in infinite dimensions. IMA J. Numer. Anal., 493-548 (2021) · Zbl 1460.65054
[15] Cox, S. G.; Kirchner, K., Regularity and convergence analysis in Sobolev and Hölder spaces for generalized Whittle-Matérn fields. Numer. Math., 819-873 (2020) · Zbl 1455.65210
[16] Defant, A.; Floret, K., Tensor Norms and Operator Ideals. North-Holland Mathematics Studies (1993), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam · Zbl 0774.46018
[17] Feireisl, E.; Lukáčová-Medvid’ová, M.; She, B.; Yuan, Y., Convergence and error analysis of compressible fluid flows with random data: Monte Carlo method. Math. Models Methods Appl. Sci., 2887-2925 (2022) · Zbl 1524.65012
[18] Fernique, X., Regularité des trajectoires des fonctions aléatoires gaussiennes, 1-96 · Zbl 0331.60025
[19] Floret, K., Natural norms on symmetric tensor products of normed spaces, 153-188, 1999 · Zbl 0961.46013
[20] Floret, K., The extension theorem for norms on symmetric tensor products of normed spaces, 225-237 · Zbl 1010.46019
[21] Giles, M. B., Improved multilevel Monte Carlo convergence using the Milstein scheme, 343-358 · Zbl 1141.65321
[22] Giles, M. B., Multilevel Monte Carlo path simulation. Oper. Res., 607-617 (2008) · Zbl 1167.65316
[23] Giles, M. B.; Debrabant, K.; Rössler, A., Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete Contin. Dyn. Syst., Ser. B, 3881-3903 (2019) · Zbl 1420.60063
[24] Giles, M. B.; Reisinger, C., Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs in finance. SIAM J. Financ. Math., 572-592 (2012) · Zbl 1257.35200
[25] Giles, M. B.; Szpruch, L., Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation. Ann. Appl. Probab., 1585-1620 (2014) · Zbl 1373.65007
[26] Gittelson, C. J.; Könnö, J.; Schwab, Ch.; Stenberg, R., The multi-level Monte Carlo finite element method for a stochastic Brinkman problem. Numer. Math., 347-386 (2013) · Zbl 1281.65010
[27] Graham, I. G.; Scheichl, R.; Ullmann, E., Mixed finite element analysis of lognormal diffusion and multilevel Monte Carlo methods. Stoch. Partial Differ. Equ. Anal. Comput., 41-75 (2016) · Zbl 1371.65008
[28] Grisvard, P., Elliptic Problems in Nonsmooth Domains. Classics in Applied Mathematics (2011), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1231.35002
[29] Gyöngy, I.; Rásonyi, M., A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients. Stoch. Process. Appl., 2189-2200 (2011) · Zbl 1226.60095
[30] Haji-Ali, A.-L.; Nobile, F.; Tempone, R., Multi-index Monte Carlo: when sparsity meets sampling. Numer. Math., 767-806 (2016) · Zbl 1339.65009
[31] Haji-Ali, A.-L.; Nobile, F.; von Schwerin, E.; Tempone, R., Optimization of mesh hierarchies in multilevel Monte Carlo samplers. Stoch. Partial Differ. Equ. Anal. Comput., 76-112 (2016) · Zbl 1359.65013
[32] Heinrich, S., Multilevel Monte Carlo methods, 58-67 · Zbl 1031.65005
[33] Hoffmann-Jørgensen, J., Slepian’s inequality, modularity and integral orderings, 19-53 · Zbl 1274.60053
[34] Hutzenthaler, M.; Jentzen, A.; Kloeden, P. E., Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab., 1611-1641 (2012) · Zbl 1256.65003
[35] Hytönen, T.; van Neerven, J.; Veraar, M.; Weis, L., Analysis in Banach Spaces. Vol. I. Martingales and Littlewood-Paley Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (2016), Springer: Springer Cham · Zbl 1366.46001
[36] Hytönen, T.; van Neerven, J.; Veraar, M.; Weis, L., Analysis in Banach Spaces. Vol. II. Probabilistic Methods and Operator Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (2017), Springer: Springer Cham · Zbl 1402.46002
[37] Janson, S.; Kaijser, S., Higher moments of Banach space valued random variables. Mem. Am. Math. Soc. (2015), vii+110 · Zbl 1336.60007
[38] Jarque, C. M.; Bera, A. K., A test for normality of observations and regression residuals. Int. Stat. Rev., 163-172 (1987) · Zbl 0616.62092
[39] Kahane, J.-P., Some Random Series of Functions. Cambridge Studies in Advanced Mathematics (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0571.60002
[40] Kirchner, K., Numerical methods for the deterministic second moment equation of parabolic stochastic PDEs. Math. Comput., 2801-2845 (2020) · Zbl 1447.65081
[41] Kirchner, K.; Lang, A.; Larsson, S., Covariance structure of parabolic stochastic partial differential equations with multiplicative Lévy noise. J. Differ. Equ., 5896-5927 (2017) · Zbl 1375.60107
[42] Koley, U.; Risebro, N. H.; Schwab, Ch.; Weber, F., A multilevel Monte Carlo finite difference method for random scalar degenerate convection-diffusion equations. J. Hyperbolic Differ. Equ., 415-454 (2017) · Zbl 1373.35179
[43] Kovács, M.; Lang, A.; Petersson, A., Approximation of SPDE covariance operators by finite elements: a semigroup approach. IMA J. Numer. Anal., 1324-1357 (2023) · Zbl 1521.65010
[44] Kruse, R., Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Lecture Notes in Mathematics (2014), Springer: Springer Cham · Zbl 1285.60002
[45] Kwapień, S., Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Stud. Math., 583-595 (1972) · Zbl 0256.46024
[46] Lang, A.; Larsson, S.; Schwab, Ch., Covariance structure of parabolic stochastic partial differential equations. Stoch. Partial Differ. Equ. Anal. Comput., 351-364 (2013) · Zbl 1306.60089
[47] Ledoux, M.; Talagrand, M., Probability in Banach Spaces: Isoperimetry and Processes. Classics in Mathematics (2011), Springer-Verlag: Springer-Verlag Berlin, Reprint of the 1991 edition · Zbl 1226.60003
[48] Lions, P.-L., Mathematical Topics in Fluid Mechanics. vol. 2, Compressible Models. Oxford Lecture Series in Mathematics and Its Applications (1998), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York · Zbl 0908.76004
[49] Mardia, K. V., Measures of multivariate skewness and kurtosis with applications. Biometrika, 519-530 (1970) · Zbl 0214.46302
[50] Mishra, S.; Risebro, N. H.; Schwab, Ch.; Tokareva, S., Numerical solution of scalar conservation laws with random flux functions. SIAM/ASA J. Uncertain. Quantificat., 552-591 (2016) · Zbl 1343.65007
[51] Mishra, S.; Schwab, Ch., Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comput., 1979-2018 (2012) · Zbl 1271.65018
[52] Mishra, S.; Schwab, Ch., Monte-Carlo finite-volume methods in uncertainty quantification for hyperbolic conservation laws, 231-277 · Zbl 1407.65150
[53] Müller-Gronbach, T.; Yaroslavtseva, L., A strong order 3/4 method for SDEs with discontinuous drift coefficient. IMA J. Numer. Anal., 229-259 (2022) · Zbl 1515.65030
[54] Ryan, R. A., Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics (2002), Springer-Verlag London, Ltd.: Springer-Verlag London, Ltd. London · Zbl 1090.46001
[55] Simader, C. G., On Dirichlet’s Boundary Value Problem: \( L^p\)-Theory Based on a Generalization of Gårding’s Inequality. Lecture Notes in Mathematics (1972), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0242.35027
[56] Teckentrup, A. L.; Scheichl, R.; Giles, M. B.; Ullmann, E., Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math., 569-600 (2013) · Zbl 1306.65009
[57] van Neerven, J., Functional Analysis. Cambridge Studies in Advanced Mathematics (2022), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1505.46002
[58] Xia, Y.; Giles, M. B., Multilevel path simulation for jump-diffusion SDEs, 695-708 · Zbl 1270.91099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.