×

CMC-1 surfaces via osculating Möbius transformations between circle patterns. (English) Zbl 1542.52018

Summary: Given two circle patterns of the same combinatorics in the plane, the Möbius transformations mapping circumdisks of one to the other induce a \(PSL(2,\mathbb{C})\)-valued function on the dual graph. Such a function plays the role of an osculating Möbius transformation and induces a realization of the dual graph in hyperbolic space. We characterize the realizations and obtain a one-to-one correspondence in the cases that the two circle patterns share the same discrete conformal structure. These correspondences are analogous to the Weierstrass representation for surfaces with constant mean curvature \(H\equiv 1\) in hyperbolic space. We further establish convergence on triangular lattices.

MSC:

52C26 Circle packings and discrete conformal geometry
57M50 General geometric structures on low-dimensional manifolds
53A70 Discrete differential geometry

Software:

CirclePack

References:

[1] Adler, V. E., Discrete equations on planar graphs, J. Phys. A, 10453-10460, 2001 · Zbl 1001.37081 · doi:10.1088/0305-4470/34/48/310
[2] Anderson, Charles Gregory, Projective structures on Riemann surfaces and developing maps to H(3) and CP(n), 112 pp., 1998, ProQuest LLC, Ann Arbor, MI
[3] Bobenko, Alexander, Discrete isothermic surfaces, J. Reine Angew. Math., 187-208, 1996 · Zbl 0845.53005 · doi:10.1515/crll.1996.475.187
[4] Bobenko, Alexander I., Hexagonal circle patterns and integrable systems: patterns with constant angles, Duke Math. J., 525-566, 2003 · Zbl 1037.52018 · doi:10.1215/S0012-7094-03-11635-X
[5] Bobenko, Alexander I., Minimal surfaces from circle patterns: geometry from combinatorics, Ann. of Math. (2), 231-264, 2006 · Zbl 1122.53003 · doi:10.4007/annals.2006.164.231
[6] Bobenko, Alexander I., Discrete integrable geometry and physics. Discretization of surfaces and integrable systems, Oxford Lecture Ser. Math. Appl., 3-58, 1996, Oxford Univ. Press, New York · Zbl 0932.53004
[7] Bobenko, Alexander I., Discrete conformal maps and ideal hyperbolic polyhedra, Geom. Topol., 2155-2215, 2015 · Zbl 1327.52040 · doi:10.2140/gt.2015.19.2155
[8] Bobenko, Alexander I., A curvature theory for discrete surfaces based on mesh parallelity, Math. Ann., 1-24, 2010 · Zbl 1219.51014 · doi:10.1007/s00208-009-0467-9
[9] Bobenko, Alexander I., Integrable systems on quad-graphs, Int. Math. Res. Not., 573-611, 2002 · Zbl 1004.37053 · doi:10.1155/S1073792802110075
[10] Bridgeman, Martin, Schwarzian derivatives, projective structures, and the Weil-Petersson gradient flow for renormalized volume, Duke Math. J., 867-896, 2019 · Zbl 1420.32007 · doi:10.1215/00127094-2018-0061
[11] Bryant, Robert L., Surfaces of mean curvature one in hyperbolic space, Ast\'{e}risque, 12, 321-347, 353 (1988), 1987 · Zbl 0635.53047
[12] B\"{u}cking, Ulrike, Advances in discrete differential geometry. Approximation of conformal mappings using conformally equivalent triangular lattices, 133-149, 2016, Springer, [Berlin] · Zbl 1355.30006
[13] Ulrike B\"ucking, \(C^\infty \)-convergence of conformal mappings for conformally equivalent triangular lattices, Results Math. 73 (2018), no. 2, 84. 3806073 · Zbl 1398.30029
[14] Charles Epstein, Envelopes of horospheres and weingarten surfaces in hyperbolic 3-spaces, (1984), Preprint. https://www.math.upenn.edu/ cle/papers/WeingartenSurfaces.pdf.
[15] Gekhtman, Michael, Integrable cluster dynamics of directed networks and pentagram maps, Adv. Math., 390-450, 2016 · Zbl 1360.37148 · doi:10.1016/j.aim.2016.03.023
[16] He, Zheng-Xu, The \(C^\infty \)-convergence of hexagonal disk packings to the Riemann map, Acta Math., 219-245, 1998 · Zbl 0913.30004 · doi:10.1007/BF02392900
[17] Hertrich-Jeromin, Udo, Transformations of discrete isothermic nets and discrete cmc-1 surfaces in hyperbolic space, Manuscripta Math., 465-486, 2000 · Zbl 0979.53008 · doi:10.1007/s002290070037
[18] Kojima, Sadayoshi, Circle packings on surfaces with projective structures, J. Differential Geom., 349-397, 2003 · Zbl 1075.52509
[19] Lam, Wai Yeung, Discrete minimal surfaces: critical points of the area functional from integrable systems, Int. Math. Res. Not. IMRN, 1808-1845, 2018 · Zbl 1408.53008 · doi:10.1093/imrn/rnw267
[20] Wai Yeung Lam, Minimal surfaces from infinitesimal deformations of circle packings, Adv. Math. 362 (2020), 106939. 4046071 · Zbl 1433.52027
[21] Lam, Wai Yeung, Quadratic differentials and circle patterns on complex projective tori, Geom. Topol., 961-997, 2021 · Zbl 1462.52037 · doi:10.2140/gt.2021.25.961
[22] Lam, Wai Yeung, Advances in discrete differential geometry. Holomorphic vector fields and quadratic differentials on planar triangular meshes, 241-265, 2016, Springer, [Berlin] · Zbl 1353.30048
[23] Lam, Wai Yeung, Isothermic triangulated surfaces, Math. Ann., 165-195, 2017 · Zbl 1368.53003 · doi:10.1007/s00208-016-1424-z
[24] Luo, Feng, Combinatorial Yamabe flow on surfaces, Commun. Contemp. Math., 765-780, 2004 · Zbl 1075.53063 · doi:10.1142/S0219199704001501
[25] Rodin, Burt, The convergence of circle packings to the Riemann mapping, J. Differential Geom., 349-360, 1987 · Zbl 0694.30006
[26] Small, A. J., Surfaces of constant mean curvature \(1\) in \({\bf H}^3\) and algebraic curves on a quadric, Proc. Amer. Math. Soc., 1211-1220, 1994 · Zbl 0823.53044 · doi:10.2307/2161192
[27] Stephenson, Kenneth, Introduction to circle packing, xii+356 pp., 2005, Cambridge University Press, Cambridge · Zbl 1074.52008
[28] Thurston, William P., The Bieberbach conjecture. Zippers and univalent functions, Math. Surveys Monogr., 185-197, 1985, Amer. Math. Soc., Providence, RI · doi:10.1090/surv/021/15
[29] Umehara, Masaaki, Complete surfaces of constant mean curvature \(1\) in the hyperbolic \(3\)-space, Ann. of Math. (2), 611-638, 1993 · Zbl 0795.53006 · doi:10.2307/2946533
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.