×

Alt-Caffarelli-Friedman monotonicity formula and mean value properties in Carnot groups with applications. (English) Zbl 1542.35403

Summary: In this paper, we provide a different approach to the Alt-Caffarelli-Friedman monotonicity formula, reducing the problem to test the monotone increasing behavior of the mean value of a function involving the gradient’s norm. In particular, we show that our argument holds in the general framework of Carnot groups.

MSC:

35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35R35 Free boundary problems for PDEs

References:

[1] Alt, HW; Caffarelli, LA; Friedman, A., Variational problems with two phases and their free boundaries, Trans. Am. Math. Soc., 282, 2, 431-461, 1984 · Zbl 0844.35137 · doi:10.1090/S0002-9947-1984-0732100-6
[2] Bonfiglioli, A.; Lanconelli, E.; Uguzzoni, F., Springer Monographs in Mathematics, 2007, Berlin: Springer, Berlin · Zbl 1128.43001
[3] Caffarelli, L., Salsa, S.: A geometric approach to free boundary problems. In: Graduate Studies in Mathematics, vol. 68. American Mathematical Society, Providence (2005) · Zbl 1083.35001
[4] Citti, G.; Garofalo, N.; Lanconelli, E., Harnack’s inequality for sum of squares of vector fields plus a potential, Am. J. Math., 115, 3, 699-734, 1993 · Zbl 0795.35018 · doi:10.2307/2375077
[5] Fabes, EB; Garofalo, N., Mean value properties of solutions to parabolic equations with variable coefficients, J. Math. Anal. Appl., 121, 2, 305-316, 1987 · Zbl 0627.35041 · doi:10.1016/0022-247X(87)90249-6
[6] Ferrari, F., Forcillo, N.: A counterexample to the monotone increasing behavior of an Alt Caffarelli-Friedman formula in the Heisenberg group. In: Rendiconti Lincei Matematica e Applicazioni. arXiv:2203.06232v1 (press) · Zbl 1532.35469
[7] Ferrari, F.; Forcillo, N., A new glance to the Alt-Caffarelli-Friedman monotonicity formula, Math. Eng., 2, 4, 657-679, 2020 · Zbl 1487.35459 · doi:10.3934/mine.2020030
[8] Ferrari, F.; Lederman, C.; Salsa, S., Recent results on nonlinear elliptic free boundary problems, Vietnam J. Math., 50, 4, 977-996, 2022 · Zbl 1500.35314 · doi:10.1007/s10013-022-00565-4
[9] Folland, G.B., Stein, E.M.: Hardy spaces on homogeneous groups. In: Mathematical Notes, vol. 28. Princeton University Press, Princeton. University of Tokyo Press, Tokyo (1982) · Zbl 0508.42025
[10] Franchi, B.; Serapioni, R.; Serra Cassano, F., Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math., 22, 4, 859-890, 1996 · Zbl 0876.49014
[11] Franchi, B.; Serapioni, R.; Serra Cassano, F., On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal., 13, 3, 421-466, 2003 · Zbl 1064.49033 · doi:10.1007/BF02922053
[12] Fulks, W., A mean value theorem for the heat equation, Proc. Am. Math. Soc., 17, 6-11, 1966 · Zbl 0152.10503 · doi:10.1090/S0002-9939-1966-0192200-3
[13] Garofalo, N., A note on monotonicity and Bochner formulas in Carnot groups, Proc. R. Soc. Edinb. Sect. B Math., 2, 1-21, 2022
[14] Garofalo, N.; Nhieu, D-M, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Commun. Pure Appl. Math., 49, 10, 1081-1144, 1996 · Zbl 0880.35032 · doi:10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
[15] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (reprint of the 1998 edition) (2001) · Zbl 1042.35002
[16] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119, 147-171, 1967 · Zbl 0156.10701 · doi:10.1007/BF02392081
[17] Kupcov, LP, A mean value theorem and a maximum principle for a Kolmogorov equation, Mat. Zametki, 15, 479-489, 1974 · Zbl 0333.35040
[18] Kupcov, LP, The mean value property and the maximum principle for second order parabolic equations, Dokl. Akad. Nauk SSSR, 242, 3, 529-532, 1978
[19] Kupcov, LP, On parabolic means, Dokl. Akad. Nauk SSSR, 252, 2, 296-301, 1980 · Zbl 0484.35051
[20] Kuptsov, LP, Property of the mean for the generalized equation of A. N. Kolmogorov I, Differ. Uravneniya, 19, 2, 295-304, 1983 · Zbl 0534.35062
[21] Netuka, I., Veselý, J.: Mean value property and harmonic functions. In: Classical and modern potential theory and applications (Chateau de Bonas, 1993). NATO Advanced Science Institute Series C: Mathematics Physics Science, vol. 430, pp. 359-398. Kluwer Academic Publication, Dordrecht (1994) · Zbl 0863.31012
[22] Pini, B., Maggioranti e minoranti delle soluzioni delle equazioni paraboliche, Ann. Mat. Pura Appl., 4, 37, 249-264, 1954 · Zbl 0057.32703 · doi:10.1007/BF02415101
[23] Pini, B., Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico, Rend. Sem. Mat. Univ. Padova, 23, 422-434, 1954 · Zbl 0057.32801
[24] Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. In: Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (with the assistance of Timothy S. Murphy, monographs in harmonic analysis, III) (1993) · Zbl 0821.42001
[25] Weber, M., The fundamental solution of a degenerate partial differential equation of parabolic type, Trans. Am. Math. Soc., 71, 24-37, 1951 · Zbl 0043.09901 · doi:10.1090/S0002-9947-1951-0042035-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.